
Using the Wormulator from the command line

Brian Ross

August 4, 2011

This document describes the command-line ‘wormulator’ program, which computes end-to-end
statistics for polymers. It’s basically a souped-up version of the web-based wormulator, available
at

http://www.wiggins.wi.mit.edu/wormulator/

The command-line wormulator application and the ‘.zoo’ accessory files should all be in the same
directory. To use the program:

• Open a command prompt window. On a PC this is the DOS prompt; on a Mac, use the
Terminal application (inside Applications → Utilities).

• Navigate to the wormulator directory. Use the cd command to change directory. On a
Macintosh the directory name looks something like “/Users/me/Desktop/wormulator mac/”.
On a DOS machine it might read “C:\WINDOWS\Desktop\wormulator pc>”.

• Type “wormulator” to run the program. On the Macintosh/UNIX box you may have to type
“./wormulator” (the dot tells the computer to look in the current directory).

• Perform calculations, save results, etc. by:

1. entering commands into the command prompt

>> 2 + 3

5

2. or, alternatively, putting the commands in a text file in the wormulator directory, and
running that file from the command prompt:

>> run("twoplusthree.txt")

5

• To exit, enter the command ‘exit’.

1

http://www.wiggins.wi.mit.edu/wormulator/

1 What this program calculates

This first section duplicates the online explanation page, at:

http://www.wiggins.wi.mit.edu/wormulator/help_what.html

This wormulator tool calculates end-to-end statistics for polymers such as DNA. In particular,
it calcuates the likelihood of finding the two ends of the polymer a given distance apart, and/or
pointing in such-and-such direction relative to each other. The default is to model DNA using
is the so-called ‘wormlike chain’ polymer model, where the polymer bends according to Hooke’s
Law. The Monte Carlo method can work with any number of other polymer models as well, and it
includes a more realistic sequence-dependent DNA model due to Olson et. al[2].

The way to think about these distributions is to pretend that we are at one end of the polymer
that points with a specified orientation, and then ask: what are the chances of finding the other
end at a given location, and/or pointing at such-and-such other given orientation? In other words,
what we calculate is the following probability density:

P (R,uf ,nf |u0,n0, L)

Here the displacement of the second end relative to the first is represented by R, the tangent
direction that a given end points is u, and the ‘normal vector’ which determines the twist angle is
n. L is the length of the polymer. The situation is shown in Figure 1.

The units of the above distribution are given by the three quantities to the left of the vertical
bar: it is a probability per volume in R, per solid angle in final tangent uf , per twist angle T . The
quantities to the right do not affect the units since they are the initial conditions at the starting
end of the polymer.

Other reduced distributions can be obtained by summing or averaging over the quantities in
the full distribution. For example, if we sum the distribution over all end-to-end displacements, we
get just the probability of finding given relative tangents and twists, ignoring any dependence on
R. This distribution would be written

P (uf , T |u0, L)

Likewise, we can sum over (ignore) the tangents and/or twists.
Each output from wormulator is some distribution P (...) evaluated only at a single point (i.e.

at one value of R, uf , and T). Built-in commands allow one to perform these measurements for
various parameters or over many points of the distribution, and then print or save the results in
tables that can be plotted in some other program.

2

http://www.wiggins.wi.mit.edu/wormulator/help_what.html

uf

u0

R

n0

nf

Figure 1: Above: one particular conformation of a DNA segment with the positions and orientations
of its two ends marked as vectors. The calculated distribution would represent the probability of
any conformation having the ends positioned as shown. The displacement is given by the red
vector R. The orientation is specified by green tangent vectors u and yellow normal vectors n. The
program can also accept a ‘relative twist’: if uf and nf are rotated together so that uf is parallel
to u0, then the relative twist is defined as the the angle between the n0 and nf .

3

2 Analytic calculations

2.1 Gaussian chain

When the total length of a polymer is much greater than its (bending) persistence length, the prob-
ability distribution in R (i.e. the likelihood of a given displacement of the two ends) approaches
a distribution that is Gaussian in R = |R| and uniform in direction/orientation. It’s trivial, but
wormulator nevertheless provides the Gauss command for evaluating this distribution.

> Gauss(5, 3)

3.42551e-05

gives p(R = 3;L = 5). The units are arbitrary, so long as they are consistent between L, lp, R, etc.
The persistence length is an optional parameter, set to 1 by default. If we want to change the

persistence length, then we write a semicolon and set to a different value using an equals sign:

> Gauss(5, 3; persistence_length = 2.5)

1.94802e-05

In general, the required parameters to Wormulator commands always have to be given in the
same order: in this case chain length, then end separation. Optional parameters, which come after
a semicolon, are named explicitly when they are changed, so they can be set in any order. Both
required and optional parameters are separated by commas.

There are three other optional parameters that control the particular distribution we are mea-
suring. To ignore the relative twists of the two ends, we set the optional sum twist to the value
true. We can ignore tangents (and, automatically, twists as well) by setting sum tangent to true.
Finally, the way the end-to-end displacement is factored into the distribution depends on the sum R

parameter, which can be set to one of three values:

• 0: probability P (R, ...) of finding a given relative vector displacement of the two ends, whose
magnitude we specified. Units are 1/L3.

• 1: probability P (R, ...) of finding the two ends a given distance apart. This is equivalent to
integrating over a spherical shell. Units are 1/L.

• 2: probability P (...) with no conditions on R. This is equivalent to integrating over all space.
Answer has no units.

For example, we can obtain the tangent-only distribution by the following:

> Gauss(2, 3; sum_twist = true, sum_R = 2)

0.0795775

4

2.2 Eigenfunction method

The eigenfunction method [3, 4] applies strictly to wormlike chain polymers. It computes the end-
to-end distribution as an infinite sum of terms which can be reasonably truncated for long (L & lp)
chains. The lowest-order l = 0 term is just the Gaussian approximation, while subsequent l > 0
terms successively refine the answer. The number of terms in the sum increases very quickly with l,
so whereas truncating l at 0 involves only a single term, setting lmax at 1 or 2 necessitates summing
12 or 57 terms respectively; the runtime increases accordingly.

In addition to the sum over l-values, the eigenfunction computation involves a further integration
from Fourier ‘K’-space to real space:

p() =

∫ ∞
0

dK

∫ π

0
dθ

∫ 2π

0
dφ ·K2 sin θ · ...

≈
Kmax∑

0

∆K
π∑
0

∆θ
2π∑
0

∆φ ·K2 sin θ · ...

The tolerances of the integration are controlled by four parameters: Kmax, ∆K, ∆θ, ∆φ. The
general strategy is to increase lmax and Kmax, and decrease ∆K, ∆θ and ∆φ, until the answer
stops changing. These tolerances must be set much more stringently for short chains than long
ones.

The Wormulator decouples two steps of the eigenfunction calculation, in order to speed up
mapping a distribution over many points. In the first ‘initialization’ step one passes lmax, ∆K and
Kmax in that order. In step 2, after the initialization, the distribution can be evaluated at different
chain lengths L and over different R, u0, uf , etc. L is the only required parameter for the second
step; all other parameters are optional and so come after the semicolon. Eigenfunction calculations
work through the EF object.

The example below performs two calculations using the same initialization. The first calculation
returns a probability density for cyclization that ignores twist, because by default R = { 0, 0, 0 },
uf = u0 and nf = n0. The second calculation uses a different set of boundary conditions, but this
time it includes twist, because sum_twist defaults to false. In both cases L = 5.

> EF.Init(3, .1, 30)

> EF.P(5; sum_twist = true)

0.00059331

> EF.P(5; u0 = uf = { 0, 0, 1 }, n0 = { 1, 0, 0 }, nf = { 0, 1, 0 })

6.13346e-05

In these last calculations, the relative twist between the two ends was implied by the pair of
normal vectors n0 and nf. Since the answer only depends on the relative twist angle ψ between the
ends, it is sometimes easier to just specify ψ directly. We could have done the same as calculation
2 above using SetTwist():

> EF.P(5; u0 = uf = { 0, 0, 1 }, SetTwist(pi/2))

6.13346e-05

5

In the general case, where u0 and uf differ by some rotation R, SetTwist() obtains nf by first
rotating n0 by R, and then further rotating by ψ along uf .

The name “SetTwist()” is unfortunately somewhat misleading, in that it only specifies n0

and nf rather than imposing the relative twist angle directly. The result is therefore a sum of the
contributions of chains having relative twist ψ +N · 2π where N is any integer. There is no way of
selecting, e.g., one linking number in the case of cyclization.

Other optional arguments to EF.P() following the semicolon let the user change the material
parameters: the (bending) persistence length, the twist persistence length, and the unstressed twist
angle. The default values of these are for DNA, in units of the (bending) persistence length. All
angles are in radians.

The final set of optional parameters instruct EF.P() to calculate various reduced distributions,
by summing over the ignored degrees of freedom. In particular, the sum R argument takes three
values: 0 means no summation, 1 sums over a spherical shell (i.e. integrates over θ and φ but not
R), and 2 integrates over all space. If sum_R is set to 2 then we can skip the initialization step.

Any of the following conditions make the eigenfunction calculation run much faster: sum R is
set to 2, sum tangent is true, sum twist is true, or a cyclization probability is being computed.
Cyclization occurs when the relative displacement is precisely zero, the initial and final tangents
are equal, and the relative twist is zero (i.e. the initial and final normal vectors are equal).

6

Summary of eigenfunction and Gaussian chain commands

Gauss(polymer length, end separation ; optional parameters)

Calculates p() based on the Gaussian chain model.

optional parameters default value description

persistence_length 1 bending persistence length of polymer

sum_R 0 whether/how to sum distribution over space
sum_tangent false whether to sum distribution over relative tangents
sum_twist false whether to sum distribution over relative twists

EF.Init(l max, K step, K max)

Initializes the eigenfunction calculator using given tolerances. No optional parameters.

EF.P(polymer length ; optional parameters)

Calculates p() using the eigenfunction method. This must follow an EF.Init() command, except
when sum_R = 2.

optional parameters default value description

persistence_length 1 bending persistence length of polymer
twist_persistence_length 2.08 twist persistence length of polymer

natural_twist 98 twist rate of polymer when relaxed

R { 0, 0, 0 } relative displacement of two ends: R2 −R1

u0 { 0, 0, 1 } tangent vector at first end
uf { 0, 0, 1 } tangent vector at second end
n0 { 1, 0, 0 } normal vector at first end
nf { 1, 0, 0 } normal vector at second end

sum_R 0 whether/how to sum distribution over space
sum_tangent false whether to sum distribution over relative tangents
sum_twist false whether to sum distribution over relative twists

theta_step_num 100 number of integration steps in θ
phi_step_num 100 number of integration steps in φ

.

EF.SaveRoots(file to write)

EF.LoadRoots(file to read)

Save/load an eigenfunction initialization (the result of EF.Init()). No optional parameters.

7

3 Numerical calculations

3.1 Monte Carlo

The Monte Carlo method randomly generates polymer chain configurations composed of discrete
straight segments, and then samples the statistics of their endpoints. The trajectory of each segment
is determined by three translations (shift, slide, rise) and three rotations (bend, azimuthal angle
of bending, twist). The difference between polymer models is in the energy functions they assign
these degrees of freedom. For generality, these energy functions are stored in discrete interpolation
tables. Making a Monte Carlo measurement is therefore a two- or three-step process: 1) initialize
with a particular DNA model; 2) generate the polymer chains and/or 3) sample statistics from
the endpoints of these chains. This way we can reuse the time-consuming initialization and chain-
generation steps over many measurements.

All numerical calculations are done through the MC object:

> MC.InitWormlike(; segment_length = .1)

> MC.P(10, 1e4; at(r, { 0, 0, 1 }), dr = 0.1)

{ 1.19366, 0.196139, 50 }

The three numbers returned by MC.P() were the estimated p-value, the error, and the number of
‘hits’ (samples that satisfied the boundary conditions). (These numbers will change somewhat over
different runs because Monte Carlo is stochastic.)

3.1.1 Initialization

There is a very general way to initialize the numerical calculator with a DNA model, but it is easier
to use one of the built-in DNA models if that is what we are interested in. The first built-in model
is the wormlike chain model, which uses the MC.InitWormlike() command we demonstrated
above. All parameters are optional, so if we do pass any parameters we first need a semicolon.
The basic parameters are: persistence_length and twist_persistence_length for bending
and twist respectively; unstressed_twist which gives the zero-strain twist in radians/length; and
segment_length which determines the length of the discrete segments. If we want to initialize a
bending-only polymer we can set do_twist = false.

Two further parameters control the approximation in the interpolation tables: dist_evals

gives the number of interpolating points in both bending and twist, and sigmas gives the number
of standard deviations where each Gaussian (e−lpθ

2/2, e−ltψ
2/2) is truncated. For finer control,

one can give the discretization of the bend/twist tables individually using the BendRange and
TwistRange parameters: each contains the minimum and maximum range values and the number
of sampled points. For example, using the defaults for persistence_length and segment_length,
both methods below create the same bending distributions.

> MC.InitWormlike(; sigmas = 4, dist_evals = 50)

> MC.InitWormlike(; BendRange = { 0, 4/10^.5, 50 })

To model a 2-dimensional wormlike chain polymer, we use the init_2D parameter:

8

> MC.InitWormlike(; init_2D = true)

This fixes the azimuthal angle φ at 0 and extends the range of θ to negative bending angles.

We can use a more realistic DNA model using the base-step parameters of Olson et. al.[2] by
calling the MC.InitBP() initialization. Here the units of length are Angstroms, and each segment
corresponds to a single base step. The only optional parameters are sigmas and pdf_samples,
having the same meaning as in MC.InitWormlike().

> MC.InitBP(; sigmas = 3, pdf_samples = 200)

MC.InitBP() initializes both an average base-pair-step model, as well as a sequence-dependent
model, and we will have the option of choosing sequences when we evolve the polymers.

The general-purpose MC.Init() command is used to build a numerical polymer model that
is neither wormlike-chain nor our built-in DNA model. Using this, we need to give an energy func-
tion for each degree of freedom that differs from the default initialization. The degrees of freedom
are shift, slide and rise for translations between segments along the normal, binormal and
tangent axes; and bend (θ), azimuth (azimuthal angle of bending φ) and twist (ψ) for rotations.
Inside the parentheses, the syntax is: the number of energy functions for each degree of freedom (if
we have a sequence-dependent model; otherwise we leave it blank); semicolon; the various energy
functions; semicolon; optional parameters, including DistRange[] which sets the extremes (min-
imum, maximum) and number of samples for each interpolation table. Here is an example that
creates an extensible wormlike chain model with a cubic contribution to the bending energy. (The
& just continues a broken line.)

> MC.Init(; { bend; return 3*bend^2 + 0.1*bend^3 }, &

{ rise; return 40*(rise-1)^2 } ; &

DistRange[bend] = { 0, pi/2, 100 }, &

DistRange[rise] = { 0.5, 1.5, 100 })

Degrees of freedom that weren’t mentioned—shift, slide, azimuth and twist—took default val-
ues. In our case azimuth was a uniform distribution over [0, 2π] and the others were fixed at zero.
Passing no distributions at all generates an inextensible, unbendable polymer model. The ranges
and discretization of the distribution also take default values unless they are changed. If we’re
curious about these we could type, e.g.:

> MC.DistRange[slide]

{ { 0 }, { 0 }, 1 }

A shortcut for setting the rise distribution of inextensible polymers is to use SegmentLength().
The two commands below both make identical polymer models with inextensible segments of length
of 3.

> MC.Init(; ; DistRange[rise] = { 3, 3, 1 })

> MC.Init(; ; SegmentLength(3))

9

Coupled degrees of freedom have to be put into the same interpolation table. For example, if
we’re modeling a bending polymer that is extensible in both rise and shift, the r2 term coming
from use of the spherical basis couples the two translations, and we would write something like:

> MC.Init(; { bend; return 0.5*bend^2 }, &

{ shift, rise; return 0.1*(shift^2 + (rise-.4)^2) })

Multi-dimensional tables require much more memory and take much longer to initialize than one-
dimensional ones, because the number of entries in the table is the product of the number of samples
along each dimension.

Sequence-dependent models require that we 1) tell Init() the number of sequences before
the semicolon, and 2) enter a separate function for each sequence, for each distribution. For exam-
ple, an extension-only polymer with stiff, flexible and loose links might look like:

> MC.Init(3; { rise; return 10*(rise-1)^2; return .5*rise^2; return 0 }; &

DistRange[rise] = { { 0, -4, 2 }, { 2, 4, 3 }, 100 })

Notice how each sequence table can have different minimum and maximum values, which is why
the minimum and maximum ranges turned from single numbers to lists grouped by braces.

The interpolation tables absorb a volume element from the spherical basis, which for a
wormlike chain is r2| sin θ|. In most cases MC.Init() knows what these factors should be, but
for some strange initializations it may not be able to guess properly. (To check them, type
MC.Init.vol_els.) If need be, we can specify the volume elements ourselves, by setting the option
default_vol_el = false and giving the appropriate factor after the (last) energy function. In the
example below, we discover that the Wormulator doesn’t understand that the bend axis is always
aligned with the slide axis when there’s no azimuthal freedom, so we pass a unit volume element
manually instead.

> MC.Init(; { slide; return slide^2 }, { bend; return bend^2 }; &

DistRange[rise] = DistRange[azimuth] = { 0, 0, 1 })

> MC.Init.vol_els

{ 1, (slide^2)^.5, 1, 1, 1, 1 }

> MC.Init(; { slide; return slide^2; return 1 }, &

{ bend; return bend^2; return 1 }; &

DistRange[rise] = DistRange[azimuth] = { 0, 0, 1 }, &

default_vol_el = false)

> MC.Init.vol_els

{ 1, 1, 1, 1, 1, 1 }

Degrees of freedom that are coupled by the volume factor must appear in the same distribution.
As a debugging tool, we can save our polymer’s energy functions into text files that can be

plotted in another program. The command to do so is MC.ExportDists(). If we have a sequence-
dependent model we would look at, for example, the third energy function of each distribution by
writing MC.ExportDists(3). Each output file contains a row for every coordinate in the distribution
followed by the energy at that point: for example the columns of shift_twist_dist.txt would

10

contain shift, twist, energy in that order. Remember that these energy functions will have absorbed
various − log vi terms coming from the volume element

∏
vi.

3.1.2 Calculating p-values

To calculate a p-value we use MC.P() after initializing a model. The syntax inside of the paren-
theses is: 1) the number of segments of each polymer to generate, then 2) the number of samples;
semicolon; any conditions on the chain endpoints/midpoints using at() along with any optional
parameters. Some of the optional parameters—r0, n0, b0 and u0—give the initial state of the
chain; others (dr and dangle) give the volume of the target space in units of length and radians.
The result will be the number of hits divided by the target volume. Increasing the target volume
reduces counting error but averages the distribution over a larger region. A typical calculation of
the probability density for evolving from (1, 0, 0) to the origin might be:

> MC.InitWormlike()

> MC.P(20, 1e5; at(r, { 0, 0, 0 }), r0 = { 1, 0, 0 }, dr = .2)

{ 0.0214859, 0.00130076, 72 }

The way to read the output is: p ≈ 0.0235748± 0.00191079, as estimated from 79 samples.

There are two ways to measure the probability density.

1. The one-shot method is to generate chains, storing in memory the endpoints of only those
chains that satisfy the given critera within tolerances. If relatively few chains are expected
to pass selection, then we can use the max_hits option to limit the memory overhead. In
the example below we only allocate storage for 1000 endpoints even though we conduct 105

runs. The calculation ends after either 105 chains have been tested, or the number passing
selection hits 1000. In our case we can see that the former condition stopped the calculation,
at which point the storage space shrank from 1000 to 16 (the number of hits).

> MC.P(20, 1e5; at(r, { 0, 0, 0 }), dr = .2, max_hits = 1e3)

{ 0.00447623, 0.00124836, 15 }

2. The alternative, 2-step method is to first store the endpoints of all chains with no selection
criteria, then to search that long list for those that satisfy the endpoint criteria using a second
call to MC.P(). The second MC.P() shouldn’t regenerate the chains, and we communicate this
to the Wormulator by omitting everything before the semicolon. Decoupling chain-generation
from endpoint-sampling makes repeated measurements of the same distribution much faster,
because chain generation is much the slower step and we only have to do that once.

> MC.P(20, 1e5)

> MC.P(; at(r, { 0, 0, 0 }), dr = .2)

{ 0.00447623, 0.00124836, 15 }

11

Using method (2), we can also calculate the mean of R2n and (R · u0)n from a set of chains.
The parameter to either command is the power n; the default is n = 1. This next example
calculates R · u0 and R4.

> MC.InitWormlike(), MC.P(20, 1e5)

> MC.R_dot_u0()

{ 0.894948, 0.00116446 }

> MC.R_2N(2)

{ 6.27563, 0.00693568 }

The at() function lets us set position constraints by writing a ‘r’ (as in “at(r, {...})”), or
orientation constraints on the tangent by writing ‘u’ or ‘z’, constraints on the normal by n or x and
binormal constraints by b or y. Ignorable degrees of freedom in r, denoted by a ‘*’, are useful for
setting one- or two-dimensional r-constraints:

> MC.P(10, 1e5; at(r, { *, 0, * }))

We can also put constraints on the midpoints. The command below selects chains having a tangent
along ẑ at the midpoint of the chain (end of segment 5), and a tangent along −ẑ at the end (of
segment 10 by default).

> MC.P(10, 1e5; at(u, { 0, 0, 1 }; segment = 5), at(u, { 0, 0, -1 }))

We need to have the Wormulator store midpoints when we generate the chains, if we want
to set criteria on those midpoints of a chain using method #2, or if we want to look their R2 or
R · u0 statistics. Borrowing our last example, the way to do this is as follows:

> MC.P({ 5, 10 }, 1e5)

> MC.P(; at(u, { 0, 0, 1 }; segment = 5), at(u, { 0, 0, -1 }))

At the extreme, we can store the endpoint of every single segment by the shorthand:

MC.P({ 10, * }, 1e5)

which is equivalent to the more laborious:

MC.P({ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }, 1e5)

Memory usage goes up accordingly.
If it is more convenient to specify a relative twist angle between the two ends rather than their

normal vectors, use SetTwist() (discussed in the eigenfunction section). There must be a final
tangent constraint for this function to work. Example:

12

> MC.P(10, 1e5; at(u, { 0, 0, 1 }), SetTwist(pi/3))

which sets nf = { 1/2, 3^.5/2, 0 }. If we are computing cyclization with some arbitrary twist,
then we can check the linking number of the last sample.

> MC.P(10, 1; at(r, { 0, 0, 0 }), at(u, { 0, 0, 1 }), SetTwist(pi/3))

{ 0, nan, 0 }

> MC.LinkingNumber()

-16

Sequence-dependent models use a list of numbers that determine which set of energy func-
tions is used by each segment. The default sequence is { 1, 1, 1, ... }. To change this we
can use the optional sequence() command, with the number sequence either specified directly or
retrieved from a file using Load().

MC.P(5, 1e5; sequence("1 2 3 2 3"))

MC.P(5, 1e5; sequence(Load("mysequence.txt")))

Using the InitBP() initialization, it is more convenient to give a base-pair sequence. We can do
this by using bp_sequence() instead of sequence(), passing the base pairs either directly or as a
file as before. Since each dinucleotide step corresponds to a segment, the number of bases should
be one more than the length of the chain.

MC.P(5, 1e5; bp_sequence("acgtag"))

One final optional parameter to MC.P() that bears mentioning is poly_translate_mode, which
determines how the translations of the polymer co-evolve with the rotations. This parameter can
take one of three integer values: -1, 0, or 1. Setting it to poly_translate_mode = -1 causes each
segment to translate (shift, slide, rise) along its initial orientation vector; setting it to ‘1’ translates
from the final orientation. Setting poly_translate_mode = 0 translates from the ‘midstep vector’
(see [1]).

3.2 High-energy methods

The numerical component of the Wormulator has several ways of trying to calculate high-energy p-
values, by sampling or direct integration. The pure-sampling high-energy method involves sampling
the chains from a different distribution than the actual, then correcting by post-weighting. The
integration methods make a quadratic approximation to the energy function (after absorbing the
volume element). A hybrid method uses the quadratic basis as a sampling-bias function. We’ll
take each of these in turn.

3.2.1 Biased sampling

The straightforward biased-sampling method involves two initialization calls, giving: 1) the poly-
mer model function using the true energy function, and 2) an imaginary energy function whose
Boltzmann distribution is representative of chains that hit their target. Step 1 is just the standard

13

initialization procedure, using InitWormlike(), InitBP() or Init(). Step 2 involves using either
InitWormlike() or Init() as before, but adding biased_distribution = true in the optional
parameters section. As an example we look at a highly-extended 1-D extensible chain.

> MC.Init(; { rise; return 0.5*rise^2 } ; &

DistRange[rise] = { -3, 7, 1000 }, &

DistRange[azimuth] = { 0, 0, 1 })

> MC.Init(; { rise; return 0.5*(rise-2)^2 } ; &

DistRange[rise] = { -2, 6, 100 }, &

DistRange[azimuth] = { 0, 0, 1 }, &

biased_distribution = true)

> MC.P(5, 1e5; at(r, { *, *, 10 }), dr = .01)

{ 8.38005e-06, 5.15665e-07, 367 }

We need to be careful that the range of the first initialization encompasses the range of the second
initialization; otherwise we are likely to get a warning about sampling above/below some of the
distributions. The first initialization also needs to cover the normal range of the unconstrained
polymer, in order to integrate the partition function accurately. The resolution (third number in
DistRange[]) needs to be reasonably high for the first, though not second, initialization.

The biased sampling method tends to work only when the sampling distributions are close to
the actual distributions of constrained polymers. Otherwise, there tends to be a disparity in the
post-weights and the answer depends heavily on only one or a few samples. We can output the
constrained distribution, as estimated from the weighted distribution of hits, into the file hits.txt

by typing:

> MC.SaveHitTrajectories(rise)

To improve the sampling of bending chains, we can set the optional parameters fixed_bend = true

(for 2D chains) or fixed_azimuth = true (3D chains) to have the respective angles sampled against
a fixed coordinate axis rather than the local unit triad.

3.2.2 Direct integration

The first step in integrating the constrained distribution directly is to initialize the model as usual:

> MC.Init(; { rise; return 0.5*rise^2 } ; &

DistRange[rise] = { -3, 7, 1000 }, &

DistRange[azimuth] = { 0, 0, 1 })

The second step is to find an approximate minimum-energy configuration using Propagate(); if we
start close enough then MC.P() will be able to find the true energy minimum on its own. Inside the
parenthesis we specify the number of segments of the chain, then the shift-slide-rise-bend-azimuth-
twist trajectory function after a semicolon.

> MC.Propagate(5; return { 0, 0, 2, 0, 0, 0 })

Finally we make the measurement as usual, except that we set perturbative = true in MC.P().

14

> MC.P(5, 0; at(r, { *, *, 10 }), dr = .01, perturbative = true)

{ 8.15422e-06, 8.1543e-06 }

We see that the integration method gives us two answers. The first result enforces soft con-
straints by quadratic potentials. The second enforces the constraints exactly by the method of
Zhang and Crothers[5]. The usefulness of the first method is that it provides the eigenmodes as a
basis for sampling, as described in the next section.

The integration methods only use as many components of the angular constraints as there are
constrained degrees of freedom. For example, if we have at(u, { 0, 0, 1 }) then the scalar con-
straints are ux = 0 and uy = 0 but ignores the redundant uz = 1; if we have at(u, { 0, 0, 1 })

followed by at(n, { 1, 0, 0 }) then the scalar constraints are ux = uy = nz = 0. The program
is usually able to pick the best components for the analysis, but in certain cases it may pick wrong
and complain about redundant or missing constraints or not being able to find Lagrange multi-
pliers. In such a case we can force a different choice by writing some components within braces
to signal that are ignorable insofar as the integrations go. For numerical accuracy we should pick
small-magnitude components; never a ±1 component (see [5]). In the following example of an
bending-only 2D chain the final orientation is specified only by a single angle, so we need to tell the
Wormulator that there is only one degree of freedom to constrain. This must be ux = 0 because a
2D chain with the default initial orientation cannot move in ŷ.

> MC.InitWormlike(; init_2D = true, do_twist = false, segment_length = .01)

> MC.Propagate(20 ; return { 0, 0, 0.01, pi/10, 0, 0 })

> MC.P(20, 0; perturbative = true, at(u, { 0, { 0 }, { 1 } }))

{ 7.74798e-44, 1.19298e-43 }

If we just want to obtain the minimum-energy state of the polymer without integrating the
probability density, we can use the command MC.MinE():

> MC.MinE(; at(r, { *, *, 10 }))

> SaveTable("minE_conformation.txt", MC.Trajectory)

3.2.3 Hybrid: quadratic biased sampling

The methods of direct integration approximate the energy functions as Gaussians in the coordi-
nates; they provide no way to improve on that approximation if it is inaccurate. But if those
Gaussians are used as a sampling basis, then Monte Carlo with enough runs should be able to get
a better result. Adding a sampling component to the method of the last section is straightforward:
just give a number of runs greater than zero (2nd parameter of MC.P()).

15

> MC.Init(; { rise; return 0.5*rise^2 } ; &

DistRange[rise] = { -3, 7, 1000 }, &

DistRange[azimuth] = { 0, 0, 1 })

> MC.Propagate(5; return { 0, 0, 2, 0, 0, 0 })

> MC.P(5, 1e5; at(r, { *, *, 10 }), dr = .01, perturbative = true)

{ { 8.13374e-06, 2.23502e-08, 68052 }, 8.15422e-06, 8.1543e-06 }

The first three numbers are the result, error and number of hits from Monte Carlo. The last two
numbers are the exact integrated results (see last subsection).

For bendable chains, the hybrid-sampling method works poorly when the constraint potentials
(determined by dr and dangle) are much stiffer than the energetic potentials, because higher orders
of the least-stiff eigenmodes start coupling to the constraints, leading to very discrepant weighting
factors. By this logic there is a tradeoff between sampling noise and averaging error over the sam-
ple volume. If this is a problem we can try to adjust the amplitudes of the eigenmodes without
changing the sampling volume by using the optional amplitude parameter, as in:

> MC.P(5, 1e5; at(r, { *, *, 10 } ; amplitude = 2), &

dr = .01, perturbative = true)

{ { 8.12318e-06, 5.72334e-08, 35484 }, 2.93427e-06, 2.93439e-06 }

With a doubled amplitude in the constraint-breaking eigenmode, roughly half as many samples
hit their target, so statistical noise increased. In this simple example discrepant weights are not a
problem, but if they were the weighting noise would probably have been reduced.

16

Summary of Monte Carlo commands

MC.Init([# sequences] ; f1, f2, ... ; optional parameters)

Initializes a Monte Carlo object with the specified distribution functions. Each distribution
fi has the form: { x1, x2 ; return E1(x); return E2(x) ; ... [; return v(x)] }, where xi is a degree
of freedom (shift, slide, etc.) and E(x) and v(x) are energy/volume element functions.

options default value description

DistRange[shift] { 0, 0, 1 } / { -1, 1, 100 }
DistRange[slide] { 0, 0, 1 } / { -1, 1, 100 } ranges of interpolation tables
DistRange[rise] { 1, 1, 1 } / { 0, 2, 100 } over dofs that were not / were given
DistRange[bend] { 0, 0, 1 } / { 0, pi, 100 }

DistRange[azimuth] { -pi, pi, 2 } / { -pi, pi, 100 } ({min, max, samples }
DistRange[twist] { 0, 0, 1 } / { -pi, pi, 100 }

biased_distribution false true if setting bias distributions
default_vol_el true false if user provides a v(x) function
invert_CDFs false pre-invert PDF tables for faster sampling

(inaccurate w/ high-E methods)

.

MC.InitWormlike(; optional parameters)

A simpler alternative to Init() if we are using the wormlike chain model.

options default value description

persistence_length 1 bending persistence length of polymer
twist_persistence_length 2.08 twist persistence length of polymer

unstressed_twist 98 twist rate of polymer when relaxed

segment_length 1 length of each segment

dist_evals 100 discretization of distributions
sigmas 5 distribution cutoff

BendRange[shift] { ∓σ
√
ls/lp, 100 } range of bending table

TwistRange[slide] { ∓σ
√
ls/lt, 100 } range of twist table

init_2D false use a 2-D WLC model
do_twist true allow twist

biased_distribution false true if setting a bias function

.

MC.InitBP(; optional parameters)

Initializes a sequence-dependent DNA model.

dist_evals 100 discretization of distributions
sigmas 5 distribution cutoff

.

17

MC.Propagate(# of segments ; x(i) ; optional parameters)

Propagates the segments of a chain using the specified trajectory function. x(i) should be of
the form return [expr], where expr can involve the segment number written as ‘segment’.

options default value description

r0 { 0, 0, 0 } initial position
n0 { 1, 0, 0 } initial normal vector
b0 { 0, 1, 0 } initial binormal vector
u0 { 0, 0, 1 } initial tangent vector

.

MC.P([# of segments, # samples] ; at(..), at(..), ..., optional parameters)
MC.MinE(; at(..), at(..))

Finds the minimum energy configuration, and in the case of MC.P() then generates a series of
chains using the current initialization and/or saves the mid/endpoints of a selection of these. Each
constraint requires: at(type, { a, b, c } ; options) where the type is one of (r/x/y/z/n/b/u).

options default value description

r0 { 0, 0, 0 } initial position
n0 { 1, 0, 0 } initial normal vector
b0 { 0, 1, 0 } initial binormal vector
u0 { 0, 0, 1 } initial tangent vector

max_hits # samples endpoint storage size/calc. cutoff

dr 1. max. dR for position constraint
dangle pi/6 max. dθ for orientation constraint

sample_all false store all conformations

perturbative false quadratic approximation

fixed_bend false measure bend angles on fixed frame
fixed_azimuth false measure azimuthal angles on fixed frame

poly_translate_mode 0 segment translation axes

minE_method 4 energy minimization algorithm (1-4)
max_iterations 1000 # of iterations before giving up on E-minimization

grad_convergence_limit 10−6 max gradient for E-minimization
max_C 10−6 max constraint violation for E-minimization

segment -- at() # segments segment to constrain endpoint
amplitude -- at() 1 constraint amplitude for quadratic-bias sampling

.

MC.R 2N(moment ; optional params)
MC.R dot u0(moment ; optional params)

Measure the even moment
〈
R2n

〉
, or the mean dot product 〈(R · u0)n〉, of the sampled mid/endpoints.

options default value description

segment # segments segment to measure
.

18

4 Miscellaneous

4.1 Generating tables

To map a distribution over one or more parameters, we just iterate the commands described above
while systematically changing those parameters. There is an automated tool to do this called
MakeTable(). The input to MakeTable() is: the filename for the output, followed by a list of: each
parameter that we want to vary in double-quotes, along with their minimum and maximum values
and optionally their spacing; semicolon, then the commands that generate output. If we also want
screen output as each result comes in, then we put a second semicolon and invoke writeout = true.
Example:

> MakeTable("test_lK.txt", { "l", 2, 4 }, { "Kmax", 20, 40, 10 } ; &

EF.Init(l, 0.1, Kmax), &

EF.P(5 ; sum_twist = true) ; &

writeout = true)

2 20 5.90488e-4

2 30 5.8079e-4

2 40 5.83384e-4

3 20 6.13102e-4

3 30 5.93310e-4

3 40 5.86193e-4

4 20 6.01703e-4

4 30 5.92093e-4

4 40 5.94614e-4

The first column is the l-value, the second column is Kmax and the final column is the output of
the EF.P() function. Since for l we only gave minimum and maximum values, the spacing was
assumed to be one.

There is no restriction on what our parameters are called, so long as they are alphanumeric
(beginning with a letter) and avoid reserved keywords like print. Also, they can go anywhere,
including the initialization commands, and we can have as many outputs as we like.

> MakeTable("test_lp.txt", { "lp", 2, 4, 0.5 } ; &

Gauss(5, 0 ; persistence_length = lp, sum_tangent = true), &

MC.InitWormlike(; segment_length = 0.1, persistence_length = lp), &

MC.P(50, 1e5 ; at(r, { 0, 0, 0 }), dr = 0.4) ; &

writeout = true)

2 3.68864e-3 8.20642e-4 1.51521e-4 22

2.5 2.63938e-3 2.98415e-4 9.51016e-5 8

3 2.00784e-3 7.46039e-5 4.56853e-5 2

3.5 1.59334e-3 3.73019e-5 3.73019e-5 1

4 1.30413e-3 0 0 0

The columns are: 1) l; 2) the output from Gauss(); 3-5) the output from MC.P() (answer, error,
number of hits). Clearly the Gaussian chain model becomes invalid as lp → L.

19

4.2 Mathematical functions

The commands we’ve described all require parameters that are numbers. We can either calculate
these numbers ourselves and plug them in directly, or else have the Wormulator calculate them.
To show this, we’ll write the same at() function in three different ways:

at(u, { 0.5, 0.866025, 0 })

at(u, { 1/2, 3^.5/2, 0 })

at(u, { cos(pi/3), sin(pi/3), 0 })

If we choose to let the Wormulator evaluate the numbers, we have the standard palette of basic
mathematical operations, functions and constants to choose from. The standard operators are +, -,
*, /, ^ (exponentiation). pi and e are predefined; the exponential function is written e^.... The
built-in functions are: log() (base e); the trigonometric functions: sin(), cos(), tan(), along
with their inverses: asin(), acos(), atan(); abs() (absolute value); round_down(), round_up()
(to nearest integer); random() (uniform on [0, 1]); min(), max(). The keyword ans is a shortcut
for whatever was last printed.

4.3 Troubleshooting

Since the Monte Carlo calculation is rather complex, there are a few internal checks we can do to
make sure we’re doing what we think. These are split between internal tables we can look at, and
functions that export files with useful information.

After the initialization step we can look at the distributions by entering ExportDists() and
ExportBiasedDists(). As described earlier, these create a set of files, named according to the
initialization, containing the coordinates of each interpolation point along with its p-value. Note:
after a MC.P() call in which perturbative = true, running ExportBiasedDists() outputs the
energy functions, i.e. the −log() values of the (true) probability distributions.

There are two variables that store the state of the current chain after running MC.P() or
MC.Propagate(). In the case of MC.P() this will be the last chain generated, regardless of whether
it hit its target or not.

• MC.Trajectory contains 6 columns: shift-slide-rise-bend-azimuth-twist of each segment in
the chain.

• MC.Segments[*].r contains 3 columns: the x-y-z positions of the endpoints of the segments.
There are N + 1 segment endpoints for a chain having N segments.

• MC.Segments[*].n stores the normal vector of each segment endpoint in x-y-z coordinates.

• MC.Segments[*].b stores the binormal vectors.

• MC.Segments[*].n stores the tangent vectors.

To print any of these tables to the screen, we use mprint(), as in:

mprint(MC.Segments[*].r)

Alternatively, we can save a given table to a file by typing, for example:

20

SaveTable("trajectory.txt", MC.Trajectory)

(The name of the file is our choice.) One further list that is useful after a MC.P() command is
MC.P_weights, which contains the log-probability weight for each chain that hit its target.

Finally, there are three commands that save data related to the last MC.P() call.

• MC.SaveHitSegments() stores the endpoints, or stored midpoints (passing an optional seg-
ment number), of the hits resulting from a given run. One use for this is to look at the
distribution of all generated chains, by running this command after a MC.P() call that had
sample_all = true set.

• MC.SaveHitTrajectories(table #) stores the weighted distributions (shift, slide, etc.) av-
eraged over all segments of the chains that hit their target. This should be 1) close to
the biased sampling distrbiution if one is being used, and 2) should not be noisy (oth-
erwise the MC.P_weights distribution is dominated by a few samples). An optional sec-
ond parameter specifies the set of distributions if it is a sequence-dependent model: e.g.
MC.SaveHitTrajectories(shift).

• MC.PropMode(mode #) pertains to the perturbative high-energy methods. It propagates using
the minimum-energy trajectory plus the given eigenmode with some amplitude (which can
be adjusted using an optional second parameter). Saving the output of two of these calls al-
lows us to visualize the mode in a plotting program. Use only after MC.P() with zero samples.

> MC.PropMode(1, 0)

> SaveTable("min_E.txt", MC.Segments[*].r)

> MC.PropMode(1)

> SaveTable("with_mode_0.txt", MC.Segments[*].r)

4.4 Estimating computation time and memory

Some calculations can really blow up in terms of time and memory requirements, so it’s helpful to
know in advance how intensive a calculation will be. We can get a very rough estimate using the
Comps() function with the command(s) to test in parentheses after a semicolon:

> Comps(; MC.InitBP(), &

MC.P(100, 1e5))

{ 1.08552e+07, 36.1719 }

The first number that Comps() returns is the memory usage in bytes; the second number is
the time in seconds that the operation is expected to take. Of the numerical routines, only
MC.Init()/InitWormlike()/InitBP() and MC.P() (when new chains are being generated) con-
tribute to this estimator, since the other processes are comparatively very fast and use little memory.
The program can only give a minimum time estimate for the perturbative method when it doesn’t
start in a minimum-energy conformation.

The expected time depends on the machine one is using, so before we try this feature on a new
machine, we should calibrate the estimator by running Comps.Calibrate() on any command in

21

parentheses that takes more than a few seconds or so to run (in order to get an accurate estimate
of the machine’s speed).

> Comps.Calibrate(; MC.InitBP(), MC.P(100, 1e5))

We can also measure the true time taken by some operation using Time(). This is basically a
stopwatch function: it actually runs the operations in question and just reports after the fact how
long they took.

> Time(; MC.InitBP(), MC.P(100, 1e5))

{ 45.0466, 45 }

Both times are in seconds: the first time is based on clock ticks, the second by looking at the
computer’s time-of-day record. The first method is more accurate, but the second method is
included because the author has encountered some machines where the first method gives wildly
inaccurate results.

4.5 Random numbers

Monte Carlo sampling produces chains with random trajectories, which makes the exact results of
a sampling hard to reproduce. Even if the program were run twice and exactly the same commands
were entered in the same order, the Monte Carlo outcomes would be different. The random se-
quence generator, however, isn’t really random: it generates each new number by performing some
complicated operation on the last number in the sequence. Therefore, it is possible to reproduce
Monte Carlo results by setting the ‘seed’ (the prior number in the random sequence) to some orig-
inal value, and entering the same sequence of commands in the same order subsequent to having
that value. We can do this in the Wormulator in the following way:

> MC.InitWormlike()

> InitRandom(100)

> MC.P(100, 1e4; at(r, { 0, 0, 0 }))

{ 0.0027693, 0.000227736, 116 }

> MC.P(100, 1e4; at(r, { 0, 0, 0 }))

{ 0.00288866, 0.000197586, 121 }

> InitRandom(100)

> MC.P(100, 1e4; at(r, { 0, 0, 0 }))

{ 0.0027693, 0.000227736, 116 }

In case we want to reproduce a result where we didn’t set the random seed, we need to type
“random_seed”—which tells us the number in the sequence when the program was first run—then
reinitialize the sequence generator using that number and then repeat all of our calculations. For
consistency all example runs above were done following InitRandom(0).

22

References

[1] M. El Hassan and C. Calladine. The assessment of the geometry of dinucleotide steps in double-
helical DNA; a new local calculation scheme. Journal of molecular biology, 251(5):648–664, 1995.

[2] W. Olson, A. Gorin, X. Lu, L. Hock, and V. Zhurkin. Dna sequence-dependent deformability
deduced from protein–dna crystal complexes. Proceedings of the National Academy of Sciences
of the United States of America, 95(19):11163, 1998.

[3] A. J. Spakowitz. Wormlike chain statistics with twist and fixed ends. EPL (Europhysics Letters),
73(5):684–690, 2006.

[4] A. J. Spakowitz and Z.-G. Wang. End-to-end distance vector distribution with fixed end ori-
entations for the wormlike chain model. Physical Review E (Statistical, Nonlinear, and Soft
Matter Physics), 72(4):041802, 2005.

[5] Y. Zhang and D. Crothers. Statistical mechanics of sequence-dependent circular DNA and its
application for DNA cyclization. Biophysical Journal, 84(1):136–153, 2003.

23

	What this program calculates
	Analytic calculations
	Gaussian chain
	Eigenfunction method

	Numerical calculations
	Monte Carlo
	Initialization
	Calculating p-values

	High-energy methods
	Biased sampling
	Direct integration
	Hybrid: quadratic biased sampling

	Miscellaneous
	Generating tables
	Mathematical functions
	Troubleshooting
	Estimating computation time and memory
	Random numbers

