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Change-point analysis is a flexible and computationally tractable tool
for the analysis of times series data from systems that transition be-
tween discrete states and whose observables are corrupted by noise.
The change point algorithm is used to identify the time indices (change
points) at which the system transitions between these discrete states. We
present a unified information-based approach to testing for the existence
of change points. This new approach reconciles two previously disparate
approaches to change-point analysis (frequentist and information based)
for testing transitions between states. The resulting method is statisti-
cally principled, parameter and prior free, and widely applicable to a
wide range of change-point problems.

1 Introduction

The problem of determining the true state of a system that transitions
between discrete states and whose observables are corrupted by noise is
a canonical problem in statistics with a long history (Little & Jones, 2011a).
The approach we discuss in this letter, change-point analysis, was proposed
by E. S. Page in the mid-1950s (Page, 1955, 1957). Since its inception, change-
point analysis has been used in a great number of contexts and is regularly
reinvented in fields ranging from geology to biophysics (Chen & Gupta,
2007; Little & Jones, 2011a, 2011b).

Change-point analysis is applied to a signal consisting of a series of
observations generated by a stochastic process:1

1When X appears in capitals, it should be understood as a random variable, whereas
it is a normal variable when it appears in lowercase. If we need a statistically independent
set of variables of equal size, we will use the random variables YN, which have identical
properties to the XN.
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Figure 1: (A) Schematic of a biophysical system. One potential application
of change-point analysis is to the characterization molecular motor stepping
along a cytoskeletal filament. (B) Schematic of change-point analysis. A change-
point model of motor stepping is shown for a series of position states. The
blue dots represent measurements of motor position, corrupted by noise. The
red line represents the change-point model for the true motor position. Each
frame shows the optimal fit for n = 1, . . . , 8 position states. From the figure, it
is intuitively clear that n = 4 is the correct number of position states. Models
with additional states improve the fit to the observed data but would result in
information loss for an independent set of measurements of the same motor
positions.

XN ≡ (X1, X2, . . . , XN) ∼ p(·), (1.1)

where the observation index is often, but not exclusively, temporal and the
probability distribution for the stochastic process is represented as p.

1.1 The Change-Point Model. We define a model for the signal cor-
responding to a system transitioning between a set of discrete states. For
example, a molecular motor transitions between position states as it steps
along the cytoskelletal fillament. Each state generates a distinct distribution
of measurements, as illustrated in Figure 1. We define the discrete time in-
dex corresponding to the start of the Ith state iI. This index is called a change
point. The model parameters describing the signal distribution in the Ith
interval are θI. Together these two sets of parameters, iI and θI, parameterize
the model. The model parameterization for the signal (including multiple
states) can then be written explicitly:

�n =
(

1 i2 . . . in
θ1 θ2 . . . θn

)
, (1.2)

where n is the number of states or change points. The problem of change-
point analysis is then to determine the number and location of change points
with the parameter values describing the underlying states.
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1.2 Model Selection and Predictivity. The central difficulty in change-
point analysis is the problem of the bias–variance trade-off in selecting
the dimension of the model: the determination of the number of states (or
change points n). Adding states always improves the fit to the data, but
overparameterization both reduces the model parsimony and results in
a loss of model predictive performance. Akaike (1973) demonstrated that
these two key principles of modeling, predictivity and parsimony, were
in fact conceptually and mathematically linked. The addition of super-
fluous parameters to a model reduces predictivity (Burnham & Anderson,
1998). Under assumptions of model regularity (Watanabe, 2009), Akaike de-
rived an unbiased estimator for the model predictivity, the Akaike informa-
tion criterion (AIC), which proved to be exceptionally tractable and widely
applicable.

Unfortunately, the change-point model is not regular; there exist sin-
gular points in parameter space for which the information matrix is not
positive definite. As with nonanalytic points in complex analysis, the Tay-
lor expansion of the information poorly approximates its behavior in the
neighborhood of these singular points. The details of Akaike’s derivation
depend on the validity of this Taylor expansion, so AIC is not applicable to
the change-point problem (Watanabe, 2009). Complicating matters, the data
in a change-point problem are potentially structured and therefore are not
necessarily independent and identically distributed for all observations XN.
These properties make the application of tools like naıve cross-validation
and Watanabe’s WAIC more difficult to apply (Gelman, Hwang, & Vehtari,
2014).

1.3 Proposed Approach. Our approach can be seen as a direct extension
of AIC. In regular models, the expected information is quadratic about its
minimum in parameter space. Realizations of the data generate maximum-
likelihood estimators that fluctuate about this optimal value, in analogy
with the thermal fluctuations of a particle confined to a harmonic potential.
These fluctuations decrease the predictivity of models constructed using
maximum likelihood procedure. AIC is derived through the consideration
of these harmonic fluctuations. If a candidate change point I is supported
by the data, then the continuous parameters θI are subject to harmonic
confinement and their contribution to the model complexity is equal to
their dimensionality, as Akaike predicted, while the change point iI, as a
highly constrained discrete variable, does not contribute to the complexity
at all.

If a candidate change point is unsupported, the maximum likelihood
change point is not constrained; it can be realized anywhere over a candi-
date interval. We have recently proposed a frequentist information criterion
(FIC) applicable even in the context of singular models. Using FIC, we find
that the information as a function of change-point location can then be ap-
proximated with the squared norm of a Brownian bridge and that expected
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predictive loss can be estimated with a modified measure of the model com-
plexity derived from this description. Consideration of these two distinct
behaviors gives a piecewise information criterion that does not depend on
the detailed form of the model for the individual states, only on the num-
ber of model parameters, in close analogy with AIC. Therefore, we expect
this result to be widely applicable anywhere the change-point algorithm is
applied.

1.4 Relation to Frequentist Methods. Frequentist statistical tests have
been defined for a number of canonical change-point problems. It is in-
teresting to examine the relation between this approach and our newly
derived information-based approach. We find the approaches are funda-
mentally related. The information-based approach can be understood to
provide a predictively optimal confidence level for a generalized ratio test.
The Bayesian information criterion (BIC) has also been used in the context of
change-point analysis. We find significant differences between our results
and the BIC complexity that suggest that BIC is not suitable for application
to change-point analysis.

2 Preliminaries

The essential notation is summarized in Table 1. We represent the probabil-
ity distribution for a change-point model �n as

q(XN|�n). (2.1)

2.1 Information and Cross-entropy. The information for signal XN

given model � is

h(XN|�n) ≡ − log q(XN|�n), (2.2)

and the cross-entropy for the signal (average information) is

HN(�n) ≡ EX
p(·)

h(XN|�n), (2.3)

where the expectation over the signal XN is understood to be taken over the
true distribution p.

The state parameters, θI, and the change points, iI, are fundamentally dif-
ferent parameters. We shall assume that the state model is regular: the pa-
rameters θI have nonzero Fisher information (LaMont & Wiggins, 2015). By
contrast, the change-point indices iI are discrete and typically nonharmonic
parameters. For instance, consider a true model p = q where θ1 = θ2. In this
scenario, the cross-entropy will be independent of i2 as long as i2 ∈ (i1, i3).
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Table 1: Summary of Essential Notation for This Letter.

Data and observations
XN, X[i, j] All N observations/observations on interval [i, j]
p(·) True (unknown) distribution from which the data XN were generated
EX
q(·)

Expectation over X taken with respect to q

Model parameterization
iI Change point or first temporal index of state I
θI Parameters describing state I
θ̂X The maximum likelihood estimator (MLE) of θ

�n Vector of θI and iI describing n states
θ0 True parameter values

Measures of information and entropy
h(XN|�n) Information for XN (the negative of the log likelihood)
hi Information for the ith observation
HN(�n) N-observation cross entropy (expected information)
K(n) Complexity of a model with n states
IC Information criterion or unbiased estimator of the cross-entropy
k(n) Nesting complexity: K(n) − K(n − 1)

Derivatives of information
xi Parameter gradient of information hi
X Sum of the xi (the negative of the score function)
I Fisher information (Hessian matrix of the information hi)

The Fisher information corresponding to i2 is therefore zero. These proper-
ties have important consequences for model selection (LaMont & Wiggins,
2015).

2.2 Determination of Model Parameters. Fitting the change-point
model is performed in two coupled steps. Given a set of change-point
indices in ≡ (i1, . . . , in), we hold the change points fixed and find the maxi-
mum likelihood estimators (MLE) of the state parameters θn ≡ (θ1, . . . , θn).
These are defined as

θ̂
n
X = arg min

θn
h(XN|�n). (2.4)

The determination of the change-point indices in is a nontrivial problem
since not only are these unknown, but the number of transitions (n) is also
unknown.

2.3 Binary Segmentation Algorithm. To determine the change-point
indices, we will use a binary-segmentation algorithm that has been the sub-
ject of extensive study (see the references in Chen & Gupta, 2007). In the
global algorithm, we initialize the algorithm with a single change point
i1 = 1. The data are sequentially divided into partitions by binary
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segmentation. Every segmentation is greedy; that is, we choose the change
point on the interval (1, N) that minimizes the information in that given
step, without any guarantee that this is the optimum choice over multiple
segmentations. The family of models generated by successive rounds of
segmentation is said to be nested since successive change points are added
without altering the time indices of existing change points. Therefore, the
previous model is always a special case of the new model. In each step,
after the optimum index for segmentation is identified, we statistically test
the change in information (due to segmentation) to determine whether the
new states are statistically supported. The n change-points determined by
binary segmentation with their MLE state parameters compose �̂n. We
later distinguish between local and global segmentation: the local binary-
segmentation algorithm differs from the global algorithm only in that we
consider binary segmentation of each partition of the data independently.
The algorithms are described explicitly in the online supplement.

2.4 Information-Based Model Selection. The model that minimizes
the cross-entropy (see equation 2.3) is the most predictive model. Unfor-
tunately, the cross-entropy cannot be computed: the expectation cannot be
taken with respect to the true but unknown probability distribution p in
equation 2.3. The natural estimator of the cross-entropy is the information
(see equation 2.2), but this estimator is biased from below: due to overfitting,
added model parameters always reduce the information, even as the pre-
dictivity of the model is reduced by the addition of superfluous parameters.
To accurately estimate predictive performance, we construct an unbiased
estimator of the cross entropy that we call the information criterion:

IC(XN, n) ≡ h(XN|�̂n
X ) + K(n), (2.5)

where Kis the complexity of the model, defined as the bias in the informa-
tion as an estimator of cross-entropy:

K(n) ≡ EX,Y
p

{h(YN|�̂n
X ) − h(XN|�̂n

X )}, (2.6)

where the expectations are taken with respect to the true distribution p and
XN and YN are independent signals. Complexity is a measure of the flex-
ibility of a family of models in fitting the observed data. A more complex
model can be tuned to fit more features in the data, resulting in lower infor-
mation than models with smaller complexity. However, the more complex
model will be more prone to artificially decreasing the information relative
to its optimally predictive parameter values and reducing the predictivity
of the model by shifting the probability mass to accord with features not
reproducible in different realizations of the data. The more flexible model
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is expected to be more predictive only if the decrease in observed informa-
tion is greater than the expected magnitude of these detrimental effects as
measured by the complexity.

For a regular model in the asymptotic limit, the complexity is equal to the
number of model parameters, and the information criterion is equal to AIC.
In the context of singular models, a more generally applicable approach
must be used to approximate the complexity.

2.5 Frequentist Information Criterion. The frequentist information cri-
terion (FIC) uses a more general approximation to estimate the model com-
plexity. Since the true distribution p is unknown, we make a frequentist
approximation, computing the complexity for the model �n as a function
of the true parameterization,

KFIC(�n, n) ≡ EX,Y
q(·|�n )

{h(YN|�̂n
X ) − h(XN|�̂n

X )}, (2.7)

and the corresponding information criterion is defined,

FIC(XN, n) ≡ h(XN|�̂n
X ) + KFIC(�̂n

X, n), (2.8)

where the complexity is evaluated at the MLE parameters �̂n
X . The model

that minimizes FIC has the smallest expected cross-entropy.

2.6 Approximating the FIC Complexity. The direct computation of the
FIC complexity (see equation 2.7) appears daunting, but a tractable approx-
imation allows the complexity to be estimated. The complexity difference
between the models is

k(n)≡KFIC(n) − KFIC(n − 1), (2.9)

which is called the nesting complexity. An approximate piecewise expres-
sion can be computed as follows. Let the observed change in the MLE
information for the addition of the nth change point be

�hn ≡ h(XN|�̂n
X ) − h(XN|�̂n−1

X ). (2.10)

Consider two limiting cases. When the new parameters are identifiable, let
the nesting complexity be given by k+, whereas when the new parameters
are unidentifiable, let the nesting complexity be given by k−. When the new
parameters are identifiable, the model is essentially regular; therefore

k+(n) = d, (2.11)
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where d is the number of harmonic parameters added to the model in the
nesting procedure, as predicted by AIC.2

To compute k−, we assume the unnested model is the true model and
compute the complexity difference in equation 2.9. We then apply a piece-
wise approximation for evaluating the nesting complexity (LaMont & Wig-
gins, 2015):

k(n) ≈
{
k−(n), −�hn < k−(n)

k+(n), otherwise
. (2.12)

Since the nesting complexity represents complexity differences, the com-
plexity can be summed:

KFIC(n) ≡
n∑

j=1

k( j), (2.13)

where the first term in the series,k(1), is computed using the AIC expression
for the complexity. An exact analytic description of the complexity remains
an open question.

3 Information Criterion for Change-Point Analysis

3.1 Complexity of a State Model. As a first step toward computing the
complexity for the change-point algorithm, we will compute the complexity
for a signal with only a single state. It will be useful to break the information
into the information per observation. Assuming the process is Markovian,
the information associated with the ith observation is

hi(X
N|θ ) ≡ − log q(Xi|Xi−1; θ ). (3.1)

For a stationary process, the average information per observation is constant
h ≡ E h. The fluctuation in the information δhi ≡ hi − h has the property that
it is independent for each observation:

E δhi δh j = C0δi j, (3.2)

where C0 is a constant and δi j is the Kronecker delta due to the Markovian
property. In close analogy to the derivation of AIC, we will Taylor-expand

2Harmonic parameters are parameters with sufficiently large Fisher information that
they are not unidentifiable.
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the information in terms of the model parameterization θ around the true
parameterization θ0. We make the following standard definitions,

δθ ≡ θ − θ0, (3.3)

Îi ≡ ∇θ∇T
θ hi(X

N|θ0), (3.4)

I ≡ EX∇θ∇T
θ hi(X

N|θ0), (3.5)

xi ≡ ∇θ hi(X
N|θ0), (3.6)

X ≡
∑

i

xi, (3.7)

where δθ is the perturbation in the parameters and I and Îi are the Fisher
information and its estimator, respectively. We make the cannonical approx-
imation that the estimator is well approximated by the true value: Îi → I.
The subscript i refers to the ith observation. Note that since the true param-
eterization minimizes the information by definition, E xi = 0. Furthermore,
equation 3.2 implies that

E xi xT
j = Iδi j, (3.8)

where I is the Fisher information. The Taylor expansion of the information
can then be written as

h(XN|θ )= h(XN|θ0) + δθTX + 1
2
δθTNIδθ + O(δθ3), (3.9)

to quadratic order in δθ .
It is convenient to transform the random variables xi to a new basis in

which the Fisher information is the identity. This is accomplished by the
transformation

x′
i ≡ I−1/2xi, (3.10)

θ ′ ≡ I1/2θ, (3.11)

which results in the following expression for the information:

h(θ |XI)= h(XN|θ0) + δθ ′TX ′ + 1
2

Nδθ ′Tδθ ′ + O(δθ3). (3.12)

In our rescaled coordinate system, X ′ can be interpreted as an unbiased
random walk of N steps with unit variance in each dimension.
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We determine the MLE parameter values:

δθ̂ ′
X = − 1

N
X ′. (3.13)

To compute the complexity, we need the following expectations of the in-
formation:

EX,Y h(YN|θ̂X ) = EX,Y

{
h(YN|θ0) − 1

N
X ′TY ′ + 1

2N
X ′2 + O(δθ3)

}
, (3.14)

EX h(XN|θ̂X ) = EX,Y

{
h(XN|θ0) − 1

2N
X ′2 + O(δθ3)

}
. (3.15)

Since the signals XN and YN are independent, the second term on the right-
hand side of equation 3.14 is exactly zero. It is straightforward to demon-
strate that

EXX ′2
I = Nd, (3.16)

where d is the dimension of the parameter θ , which has an intuitive inter-
pretation as the mean squared displacement (X ′2) of an unbiased random
walk of N steps in ddimensions. The complexity is therefore

K≡ EX,Y

{
h(YN|θ̂X ) − h(XN|θ̂X )

}
= d, (3.17)

which is the AIC complexity.
This derivation of the AIC complexity through an expectation of a ran-

dom walk in the score function X can now be extended to include the effects
when the change point is not supported. When iI is not fixed by the data,
it is another a free parameter that can be chosen to maximize the decrease
in information. The nesting complexity will then be the maximum mean
squared displacement of many (correlated) random walks.

The first unsupported change point in a single state system is the first
segmentation. We compute the nesting complexity k(2) of this first segmen-
tation using equation 2.12. We will therefore generate the observations XN

and YN using the unsegmented model �1. Remember that by convention,
we assign the first change-point index to the first observation i1 = 1. The
optimal but fictitious change-point index for binary segmentation is

ı̂2(X) = arg min
1<i≤N

{ h(X[1,i−1]|θ̂X[1,i−1] ) + h(X[i,N]|θ̂X[i,N] ) } , (3.18)

where the X[ j,k] represent the respective partitions of the signal XN made by
the change point i. (Note that in the case of an autoregressive process, it is
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possible to write overlapping partitions to account for the system memory.)
The MLE model for two states is defined as

�̂2
X ≡

(
1 i

θ̂X[1,ı̂2−1] θ̂X[ı̂2 ,N] )

)
. (3.19)

To compute the nesting complexity, we compute the difference in the infor-
mation between the two-state and one-state MLE models:

h(XN|�̂2
X )− h(XN|�̂1

X ) = min
1<i≤N

{
������
h(X[1,i−1]|θ0) +�����

h(X[i,N]|θ0) −�����
h(X[1,N]|θ0)

− 1
2(i − 1)

X ′2
[1,i−1] − 1

2(N + 1 − i)
X ′2

[i,N] + 1
2N

X ′2
[1,N]

}
, (3.20)

where X ′
[i, j] are the X ′ computed in the two partitions of the data. The

terms that are zeroth order in the perturbation cancel since the model is
nested. (This equation is analogous to equation 3.15.) It is straightforward
to compute the analogous expression for information difference for signal
YN. The nesting penalty can then be written as

k−(2)≡ EX,Y
q(·|�1

0 )

{
h(YN|�̂2

X ) − h(XN|�̂2
X ) − h(YN|�̂1

X ) + h(XN|�̂1
X )

}
(3.21)

= EX
q(·|�1

0 )

max
1<i≤N

{
1

i − 1
X ′2

[1,i−1] + 1
N + 1 − i

X ′2
[i,N] − 1

N
X ′2

[1,N]

}
, (3.22)

where the cross-terms between signals XN and YN are zero since the signals
are independent. It is now convenient to introduce a d-dimensional discrete
Brownian bridge,

B′
j ≡ X ′

[1, j] − j
N

X ′
[1,N], (3.23)

by using the well-known relation between Brownian walks and bridges
(Revuz & Yor, 1999). The Brownian bridge has the property that B′

0 = B′
N =

0, where each step has unit variance per dimension and mean zero. After
some algebra, the nesting complexity can be written as

k−(2) = EX
q(·|�1

0 )

max
1≤ j<N

{
N

j(N − j)
B′2

j

}
. (3.24)

It is not surprising that the nesting complexity should be well modeled
by the square of a Brownian bridge. At the end points, the addition of
a change point does nothing; it is indistinguishable from a change point
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already in place. The complexity almost certainly increases: the smaller
model is nested in the larger model. These observations are captured in the
facts that B′

0 = B′
N = 0 and B2 ≥ 0, respectively.

The details of the state model will determine the distribution function
for the discrete steps in the Brownian bridge, but the central limit theorem
implies that the distribution will approach the normal distribution. There-
fore, it is convenient to approximate the discrete Brownian bridge B′

n as an
idealized Brownian bridge with normally distributed steps,

B′
j → B j ≡

n∑
i=1

bi, such that BN = 0, (3.25)

where the bi are steps that are normally distributed with variance one per
dimension d and mean zero. We now introduce a new random variable
U(N, d), the d-dimensional change-point statistic (Revuz & Yor, 1999),

U(N, d) ≡ 1
2

max
1≤ j<N

N
j(N − j)

B2
j , (3.26)

which is a d-dimensional generalization of the change-point statistic com-
puted by Hawkins (1977). In terms of the statistic U, the nesting penalty
is

k−(2) = 2 EU U(N, d) = 2U(N, d). (3.27)

We will discuss the connection to the frequentist likelihood ratio test shortly.

3.2 Nesting Complexity for n States. The generalization of the analysis
to n states is intuitive and straightforward. In the local binary-segmentation
algorithm, segmentation is tested locally. The relevant complexity is com-
puted with respect to the length of the Jth partition. It is convenient to
work with the approximation that all partitions are of equal length since
the complexity is slowly varying in N. We therefore define the local nesting
complexity,

kL−(n) = 2 EU U
(

N
n − 1

, d

)
= 2U

(
N

n − 1
, d

)
, (3.28)

where N
n−1 is the mean partition length. The nesting complexity for the bi-

nary segmentation of a single state is shown in Figure 2 for several different
dimensions d, and compared with the complexity predicted by AIC and
BIC.

In the global binary-segmentation algorithm, the next change point is
chosen by identifying the best position over all intervals. We therefore
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Figure 2: Nesting complexity for AIC, FIC, and BIC. The nesting complexity is
plotted for three state dimensions: d= {1, 3, 6} and n = 2. First, note that the
AIC penalty is much smaller than the other two nesting complexities. BIC is
empirically known to produce acceptable results under some circumstances.
For sufficiently large samples (N), the kBIC > kFIC, resulting in overpenalization
and the rejection of states that are supported statistically. This effect is more
pronounced for large state dimension d, where the crossover occurs for small
observation number N. kBIC is too small for a wide range of sample sizes,
resulting in oversegmentation.

generalize all our expressions accordingly. We introduce a generalization of
the change-point statistic where we replace N with a vector of the lengths of
the constituent segment lengths Nn ≡ (N1, . . . Nn). We now define our new
change-point statistic:

UG(Nn, d) ≡ max
1≤i≤n

U(Ni, d). (3.29)

Because it is computationally intensive to compute UG for all possible seg-
mentations Nn, we assume that all the partitions are roughly the same size
and consider n segments length N/(n − 1). Since the complexity is slowly
varying in N, this does not in general lead to significant information loss.3

We therefore introduce another change-point statistic,

3We empirically invesigated this equal-interval approximation, and it bounds the true
complexity from above and is therefore conservative.
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kG−(n) ≡ 2 EU max
1≤i≤n

{
Ui

(
N

n − 1
, d

)}
(≈ 2 EU UG(Nn, d)), (3.30)

that we will apply in the global binary-segmentation algorithm.

3.3 Asymptotic Expressions for the Nesting Complexity. It is straight-
forward to compute the asymptotic dependence of the nesting penalty
on the number of observations N (Horváth, 1993; Horváth, Kokoszka, &
Steinebach, 1999):

kG−(n)≈ 2 log log
N
n

+ 2 log n + dlog log log
N
n

+ . . . , (3.31)

kL−(n)≈ 2 log log
N
n

+ dlog log log
N
n

+ . . . (3.32)

These expression are slowly converging, and in practice, we advocate using
Monte Carlo integration to determine the nesting penalty. If this is compu-
tationally cumbersome, equations 3.31 and 3.32 are useful in placing our
approach in relation to existing theory.

Both the local and the global encoding have the same leading-order
2 log log N dependence that has been advocated by Hannan and Quinn
(1979), although interestingly not in this context. In contrast, this 2 log log N
dependence is in disagreement with the Bayesian information criterion,
which has often been applied to change-point analysis. As illustrated by
Figure 2, the BIC complexity,

KBIC = d

2
log N, (3.33)

can be either too large or too small depending on the number of observa-
tions and the dimension of the model. It has long been appreciated that BIC
can be only strictly justified in the large-observation-number limit. In this
asymptotic limit, the BIC complexity is always larger than the FIC com-
plexity due to the leading-order log N dependence, which will tend to lead
to underfitting or undersegmentation. It is clear from Figure 2 that large
(N > 106) may constitute much larger data sets than are produced in many
applications.

3.4 Global versus Local Complexity. We proposed two possible pa-
rameter encoding algorithms that give rise to two distinct complexities:
kL− and kG−. Which complexity should be applied in the typical problem?
For most applications, we expect the number of states n to be proportional
to the number of observations N. Doubling the length of the data set will
result in the observation of twice as many change points on average. The
application of the local nesting complexity clearly has this desired property



608 C. LaMont and P. Wiggins

since it depends on the ratio of N/n. It is this complexity that we advocate
under most circumstances.

In contrast, the global nesting complexity contains an extra contribu-
tion to the complexity 2 log n. The reason is subtle. In the global binary-
segmentation algorithm, one picks the best change point among n seg-
ments, and therefore complexity must reflect this added degree of choice.
Consequently, a larger feature must be observed to be above the expected
background. The use of the global nesting complexity makes a statement
of statistical significance against the entire signal, not just against a local
region. In the context of discussing the significance of the observation of a
rare state that occurs just once in a data set, the global nesting complexity
is the most natural metric of significance.

3.5 Computing the Complexity from the Nesting Complexity. To com-
pute the FIC complexity, we sum the nesting complexities using equa-
tion 2.13. For data sets with identifiable change points, the FIC complexity
is initially identical to AIC,

KFIC(n) = nd, (3.34)

until the change in the information on nesting �h < k−, when FIC pre-
dicts a change in slope of the penalty. The FIC-, AIC-, and BIC-predicted
complexities are compared with the true complexity for an explicit change-
point analysis in Figure 3 C. It is immediately clear from this example that
FIC quantitatively captures the true dependence of the penalty, including
the change in slope at n = 4, exactly as predicted by the FIC complexity.
As predicted, the AIC complexity is initially correct until the segmenta-
tion process must be terminated. At this point, the complexity increases
significantly, with the result that the AIC complexity fails to terminate the
segmentation process. In contrast, the BIC complexity is initially too large
but fails to grow at a sufficient pace to match the true complexity for n > 4.

When a change point is supported by the data (i.e., its location is re-
producible in multiple realizations of the observations), the complexity is
approximated by the expectation of a single chi-squared variable (i.e., the
AIC complexity). When a change point is unidentifiable (the location is de-
termined by the noise and is not reproducibly positioned), the complexity
is effectively equivalent to the expectation of the maximum of a number
of independent chi-squared random variables and therefore is significantly
larger than the AIC complexity (LaMont & Wiggins, 2015). These two dis-
tinct complexity behaviors are captured by our piecewise approximation.

4 The Relation between Frequentist and Information-Based Approach

Consider the likelihood-ratio test for the following problem. We propose
the binary segmentation of a single partition. In the null hypothesis (H0),
the partition is described by a single state (unknown model parameters θ0),



Information Criteria for Change-Point Analysis 609

Figure 3: Information-based model selection. (A) Nested models generated by
a change-point algorithm. Simulated data (blue points) generated by a true
model with four states are fitted to a family of nested models (red lines) using
a change-point algorithm. Models fit with 1 ≤ n ≤ 8 states are plotted. The fit
change points are represented as vertical black lines. The number of states (n)
in each fit model is shown in the top-left corner of each panel. The true model
has four states, and the fit model with four states is indicated with a dotted box.
The models with five through eight states have superfluous states that are not
present in the true model. (B) Four change points minimizes information loss.
Both the expectation of the information (red) and the cross-entropy (green) are
plotted as a function of the number of states n. The y-axis (h, information) is split
to show the initial large changes in h, as well as the subsequent smaller changes
for 4 ≤ n ≤ 8. The cross-entropy (green) is minimized by the model that best
approximates the truth (n = 4). The addition of parameters leads to an increase
in cross-entropy (less predictive) as a consequence of the addition of superfluous
parameters, as indicated by the increase of the cross-entropy (green) for n ≥ 4.
The information loss estimator (red) is biased and continues to decrease with the
addition of states as a consequence of overfitting. In an experimental context,
only the information can be computed since the true distribution is unknown.
(C) Complexity of change-point analysis. The true complexity is computed for
the model shown in panel A via Monte Carlo simulation for 106 realizations of
the observations XN and compared with three models for the complexity AIC,
FIC, and BIC. For models with states numbering 1 ≤ n ≤ 4, the true complexity
(black) is correctly estimated by the AIC complexity (red dotted) and the FIC
complexity (green). But for a larger number of states (4 ≤ n ≤ 8), only FIC
accurately estimates the true complexity.

and the hypothesis to be tested (H1) is that the partition is subdivided into
two states: unknown change point and model parameters θ1 and θ2. We use
the log-likelihood ratio as the test statistic:
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V(XN ) ≡ log
q(XN|�̂2

X )

q(XN|�̂1
X )

= h(XN|�̂1
X ) − h(XN|�̂2

X ). (4.1)

In the Neyman-Pearson approach to hypothesis testing, we assume the null
hypothesis (1 state) and compute the distribution in the test statistic V. As
before, we will expand the information around the true parameter values
θ0. In exact analogy to equation 3.20, we find that V and our previously
defined statistic U identically distributed,

V ∼ U, (4.2)

up to the approximations discussed in the derivation. Therefore, we will
simply refer to V as U.

In the canonical frequentist approach, we specify a critical test statistic
value uγ above which the alternative hypothesis is accepted. uγ is selected
such that the alternative hypothesis H1 is rejected given that the null hy-
pothesis H0 is true with a probability equal to the confidence level γ ,

γ = FU (uγ ), (4.3)

where FU is the cumulative distribution of U.
Therefore, we can interpret both the information-based approach and the

frequentist approach as making use of the same statistic U. In the frequentist
approach, a confidence level (γ ) is specified to determine the critical value
uγ with which to accept the two-state hypothesis. The information-based
approach also uses the statistic U, but the critical value of the statistic
(k−) is computed from the distribution of the statistic itself k− = 2U. The
information-based approach chooses the confidence level that optimizes
predictivity.

5 Applications

In the interest of brevity, we have not included analysis of either experi-
mental or simulated data with a signal-model dimension larger than one,
but we have tested the approach extensively. For instance, we have applied
this technique to an experimental single-molecule biophysics application
that is modeled by an Ornstein-Uhlenbeck process with a state-model di-
mension of four (Wiggins, 2015a). We also applied the approach in other
biophysical contexts including the analysis of bleaching curves and cell and
molecular-motor motility (Wiggins, 2015b).
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6 Discussion

In this letter, we present an information-based approach to change-point
analysis using the frequentist information criterion (FIC). The information-
based approach to inference provides a powerful framework in which mod-
els with different parameterization, including different model dimension,
can be compared to determine the most predictive model. The model with
the smallest information criterion has the best expected predictive perfor-
mance against a new data set.

Our approach has two advantages over existing frequentist-based ratio
tests for change-point analysis. First, we derive an FIC complexity that de-
pends on only the dimension of the state model (d), the number of states
(n), and observations (N). Therefore, it may be unnecessary to develop and
compute custom statistics for specific applications. Second, in the frequen-
tist approach, one must specify an ad hoc confidence level to perform the
analysis. In the information-based approach, the confidence level is cho-
sen automatically based on the model complexity. The information-based
approach is therefore parameter and prior free.

As the number of change-points increases, the model complexity is
observed to transition between an AIC-like complexity O(N0) and a
Hannan-and-Quinn-like complexity O(log log N). We propose an approxi-
mate piecewise expression for this transition. The computation of this ap-
proximate model complexity can be interpreted as the expectation of the ex-
tremum of a d-dimensional Brownian bridge. We believe this information-
based approach to change-point analysis will be widely applicable.
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