Displacement Current and EM waves

Lecture 28 (the last!)

Inconsistent (or not)?

Earlier: Why can't I use the Ampère Law?

 \rightarrow I

A problem with the Ampère Law...

• RHS of the Ampère Law is equal for surfaces with the same boundary! $\partial \mathcal{M} \equiv \partial \mathcal{M}_1 = \partial \mathcal{M}_2$

• No problems here!

A problem with the Ampère Law...

RHS of the Ampère Law is equal for surfaces with the same boundary!

$$\oint_{\partial M} \vec{d\ell} \cdot \vec{B} = \mu_0 I_{\text{enc.}}(\mathcal{M})$$

- "Houston, we have a problem!"
- Steady state is fine but time dependent Q is a problem!

Similar problem with the Faraday Law:

• Time independent equation (E is conservative):

$$\oint_{\partial M} \vec{d\ell} \cdot \vec{E} = 0$$

• Faraday-Maxwell Equation:

$$\oint_{\partial M} \vec{d\ell} \cdot \vec{E} = -\int_{\mathcal{M}} d^2 A \ \hat{n} \cdot \frac{\partial}{\partial t} \vec{B}$$

• Symmetry Ampère-Maxwell Equation?

$$\oint_{\partial M} \vec{d\ell} \cdot \vec{B} = \mu_0 I_{\text{enc}} + C_0 \int_{\mathcal{M}} d^2 A \ \hat{n} \cdot \frac{\partial}{\partial t} \vec{E}$$

Consider the capacitor: Displacement Current

• Ampère-Maxwell Equation: $\vec{j}_{tot} = \vec{j} + \epsilon_0 \partial_t \vec{E}$

$$\oint_{\partial M} \vec{d\ell} \cdot \vec{B} = \mu_0 I_{\text{enc}} + \epsilon_0 \mu_0 \int_{\mathcal{M}} d^2 A \ \hat{n} \cdot \frac{\partial}{\partial t} \vec{E}$$

Electrodynamics & the (Integral) Maxwell Equations

- Gauss Law (E): $\oint_{\mathcal{M}} d^2 A \ \hat{n} \cdot \vec{E} = Q_{\text{inside}} / \epsilon_0$
- Gauss Law (B): $\oint_{\mathcal{M}} d^2 A \ \hat{n} \cdot \vec{B} = 0$
- Ampère Law:

$$\oint_{\partial \mathcal{M}} \vec{d\ell} \cdot \vec{B} = \mu_0 I + \mu_0 \epsilon_0 \frac{d}{dt} \int_{\mathcal{M}} d^2 A \, \hat{n} \cdot \vec{E}$$

• Faraday Law:

$$\oint_{\partial \mathcal{M}} \vec{d\ell} \cdot \vec{E} = -\frac{d}{dt} \int_{\mathcal{M}} d^2 A \, \hat{n} \cdot \vec{B}$$

Ampère-Maxwell Law: More than meets the eye!

• In vacuum:

Source $\oint_{\partial M} \vec{d\ell} \cdot \vec{B} = \epsilon_0 \mu_0 \int_{\mathcal{M}} d^2 A \ \hat{n} \cdot \frac{\partial}{\partial t} \vec{E}$ $\oint_{\partial M} \vec{d\ell} \cdot \vec{E} = -\int_{\mathcal{M}} d^2 A \ \hat{n} \cdot \frac{\partial}{\partial t} \vec{B}$

- Coupling between time-dependent equations could lead to propagation of perturbations in the fields!
- Waves!

Remember... (review?)

Do Maxwell Eqn's lead to a wave equation?

- Consider a very small loop..
- Keep only the lowest order terms...
- Identical derivation for Ampère Law

$$\int_{\partial \Sigma} \alpha = \int_{\Sigma} \mathrm{d}\alpha$$

Simplest realization:

$$\int_{x_1}^{x_2} \mathrm{d}x \, \frac{\mathrm{d}}{\mathrm{d}x} f(x) = f(x_2) - f(x_1)$$

Integral of total d Evaluate on boundary

Aside... Maxwell Equations Differential Form:

• Gauss Laws:

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$
$$\vec{\nabla} \cdot \vec{B} = 0$$

• Faraday-Maxwell Law:

$$\vec{\nabla} \times \vec{E} = -\partial_t \vec{B}$$

• Ampère-Maxwell Law:

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{j} + \mu_0 \epsilon_0 \partial_t \vec{E}$$

Do Maxwell Eqn's lead to a wave equation?

Maxwell Equation to describe a wave eqn!

• Wave equation for EM waves:

$$\frac{\partial^2}{\partial z^2}\vec{E} = \epsilon_0\mu_0\frac{\partial^2}{\partial t^2}\vec{E}$$

Identify the propagation speed of the wave:

$$\frac{\partial^2}{\partial z^2}h = \frac{1}{v^2}\frac{\partial^2}{\partial t^2}h$$

• The speed of the wave matches the speed of light!

$$v = c = \frac{1}{\sqrt{\epsilon_0 \mu_0}} \approx 3 \times 10^8 \text{ m/s}$$

Faraday's Hypothesis:

- Light is an electromagnetic wave!
- Unified theories of Electricity, Magnetism and Light!

Michael Faraday James Clerk Maxwell (Proposal) (Theoretical Motivation) Heinrich Hertz (Experiment)

Light is not the only type of EM wave!

Increasing Wavelength (λ) in nm \rightarrow

Demo on EM waves

More features of EM waves

• Wave equation:

$$\frac{\partial^2}{\partial z^2}\vec{E} = \epsilon_0 \mu_0 \frac{\partial^2}{\partial t^2}\vec{E}$$

• Plug in sinusoidal solution

$$E = E_0 \sin(kz - \omega t)$$

- Dispersion relation: wave number: $k=\omega/c$ $\lambda=2\pi/k$ $\lambda\nu=c$

More features of EM waves

Example: A Harmonic Solution $E_{x} = E_{o} \cos(kz - \omega t) \xrightarrow{\frac{\partial E_{x}}{\partial z} = -\frac{\partial B_{y}}{\partial t}} B_{y} = \frac{k}{\omega} E_{o} \cos(kz - \omega t)$