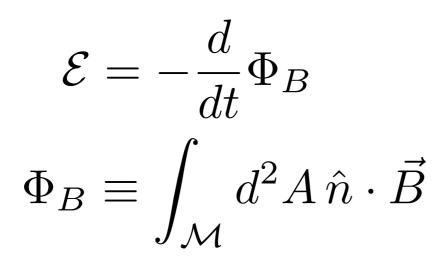
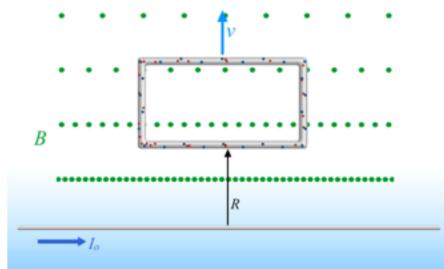
Faraday Law (of Induction), (Maxwell-)Faraday Law & Lenz Law

Lecture 22

Faraday Law (of Induction)

 Changes in the Magnetic Flux through a loop induces an EMF:

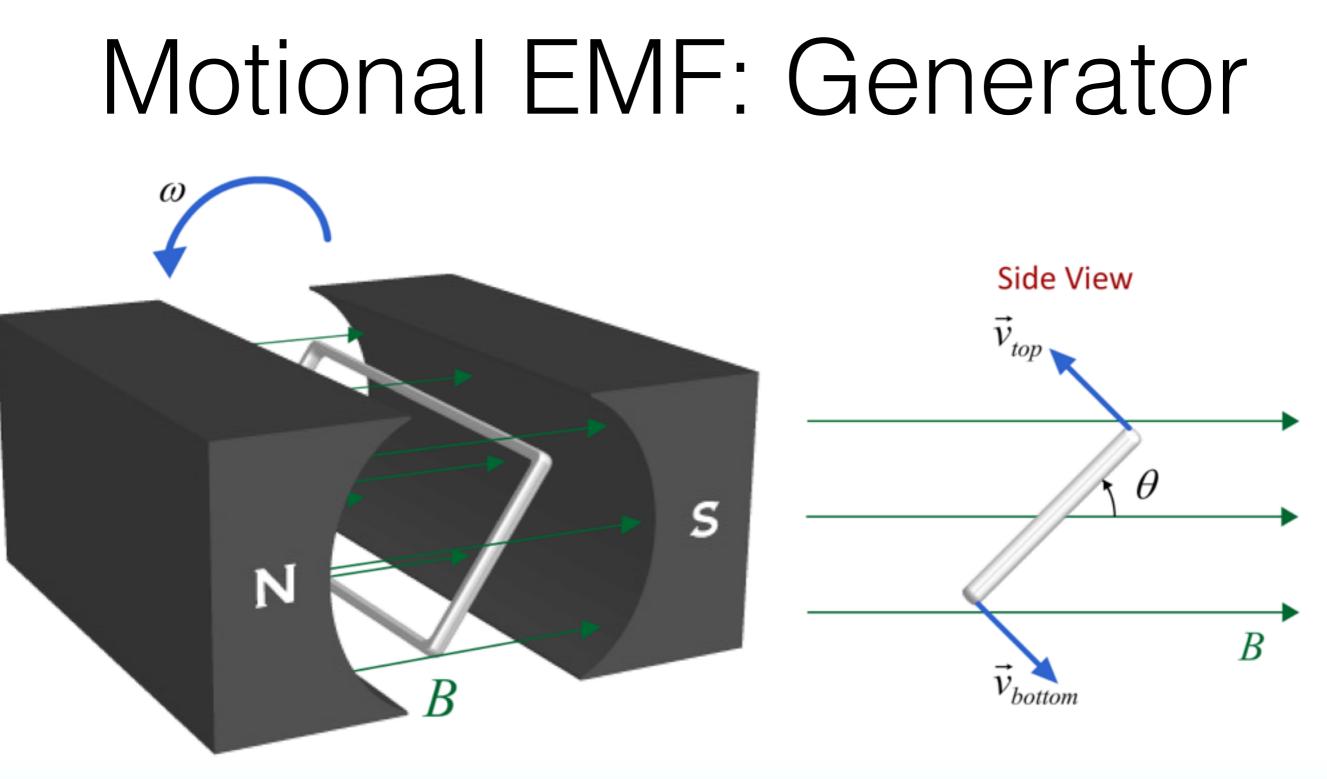




- **Transformer EMF:** Changes in B generate E
- Motional EMF: Changes in M generate F_B

Generator EMF Calculation axis VXB calculation . $\mathcal{E} = \oint d\vec{l} \cdot (\vec{E} + \vec{v} \times \vec{B})$ $\hat{\Theta} = -\sin\theta\hat{x} + \cos\theta\hat{y}$ $\vec{N} = \omega R \hat{O}$ 02 $\vec{B} = B\hat{\chi}$ axis $\vec{n} \times \vec{B} = -B \omega R \cos \theta \vec{z}$ () 4 Q = wt \mathcal{E} $\int dl \hat{r} / (\vec{v} \times \vec{B}) + \int dl (-\hat{z}) \cdot (\vec{v} \times \vec{B}) +$ $\int d\ell \hat{r} \cdot (\vec{v} \times \vec{B}) + \int d\ell (\hat{z}) \cdot (\vec{v} \times \vec{B})$ LBWR COSO + LBWR COSO 4 $= \omega(2RL) \cdot B \cos \theta$ WABCOS @ = WABCOS Wt 1

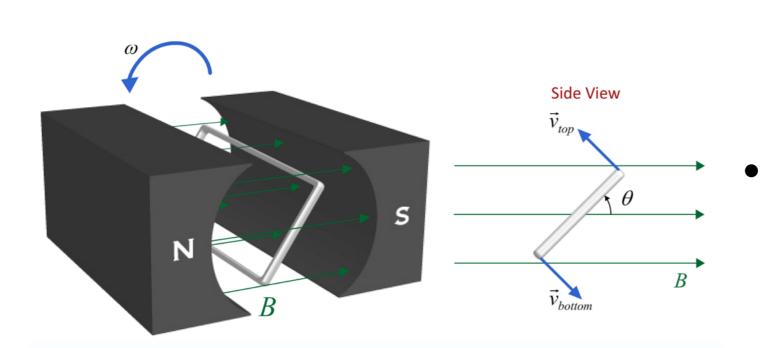
Faraday Law Induction: $\hat{n} = -\sin\theta \hat{x} + \cos\theta \hat{y}$ TA/ $\vec{B} = \vec{x}B$ = - ABSIND = - ABSINWt dA n.B $\overline{\varPhi}_{B} =$ WABCOSO = WABCOSWt. $-\frac{d}{dt}\overline{F}_{g}(t)$ \mathcal{E} We get the same answer both ways. E B+ $\int d^{2}A \hat{n} \cdot \hat{B}$ $\uparrow \hat{T}$ $\hat{\beta} = \hat{z} \frac{\mu_{0}T}{2\pi R}$ Don't compute this! $\widehat{\varPhi}_{B} =$ $= -[L \upsilon B_{+} - L \upsilon B_{-}] = L \upsilon (B_{-} - B_{+})$ $-\frac{d}{dt}\overline{P}_{B}$ = 3 posítivo.



Result: $\mathcal{E} = 2vLB\cos\theta$

Using magnetic flux...

• Magnetic Flux:



$$\Phi_B \equiv \int_{\mathcal{M}} d^2 A \, \hat{n} \cdot \vec{B}$$

$$\mathcal{E} = -\frac{d}{dt}\Phi_B$$

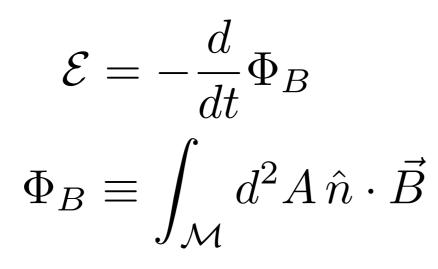
• Generator:

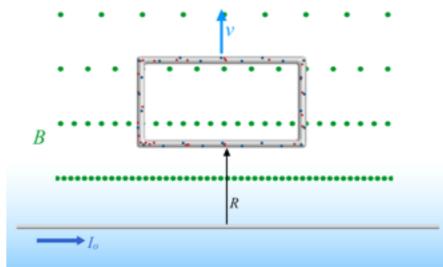
EMF:

$$\mathcal{E} = -AB\frac{d}{dt}\cos\phi(t) = -\frac{d}{dt}A\hat{n}\cdot\vec{B}$$

Faraday Law of Induction

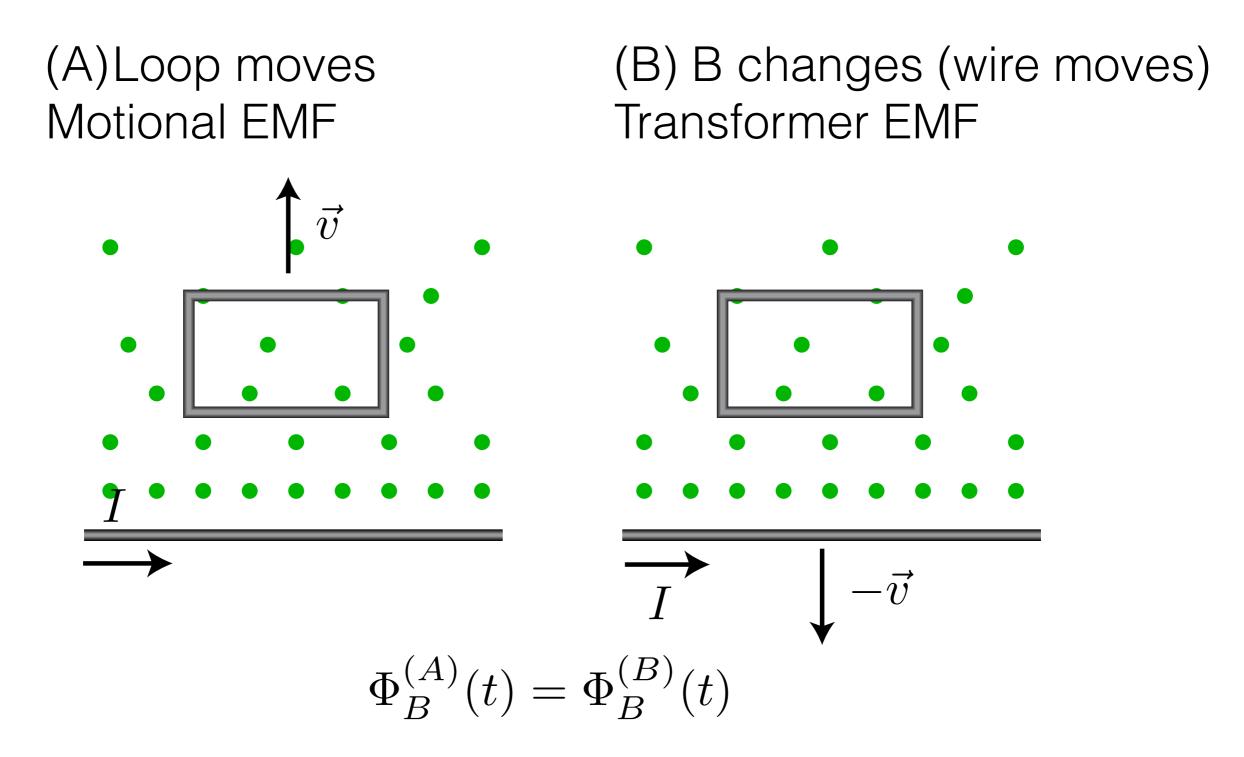
 Changes in the Magnetic Flux through a loop induces an EMF:



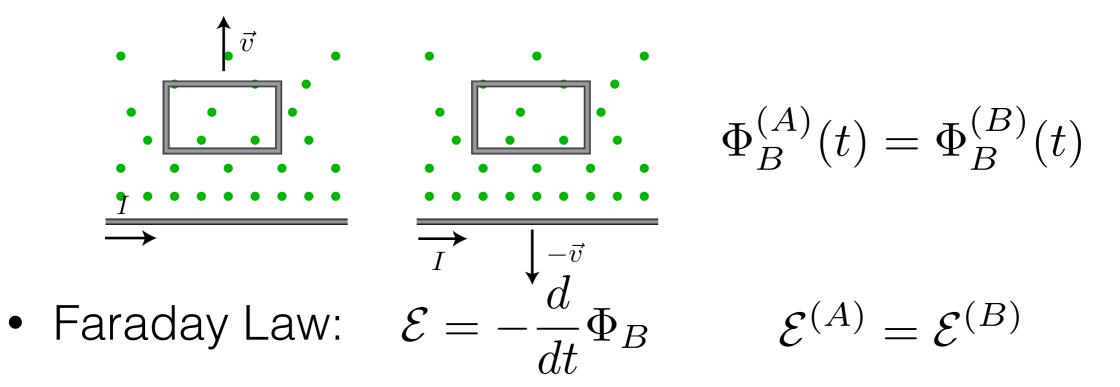


- Transformer EMF: Changes in B generate E
- Motional EMF: Changes in M generate F_B

But there are two mechanisms for changing the flux!



But there are two mechanisms for changing the flux!

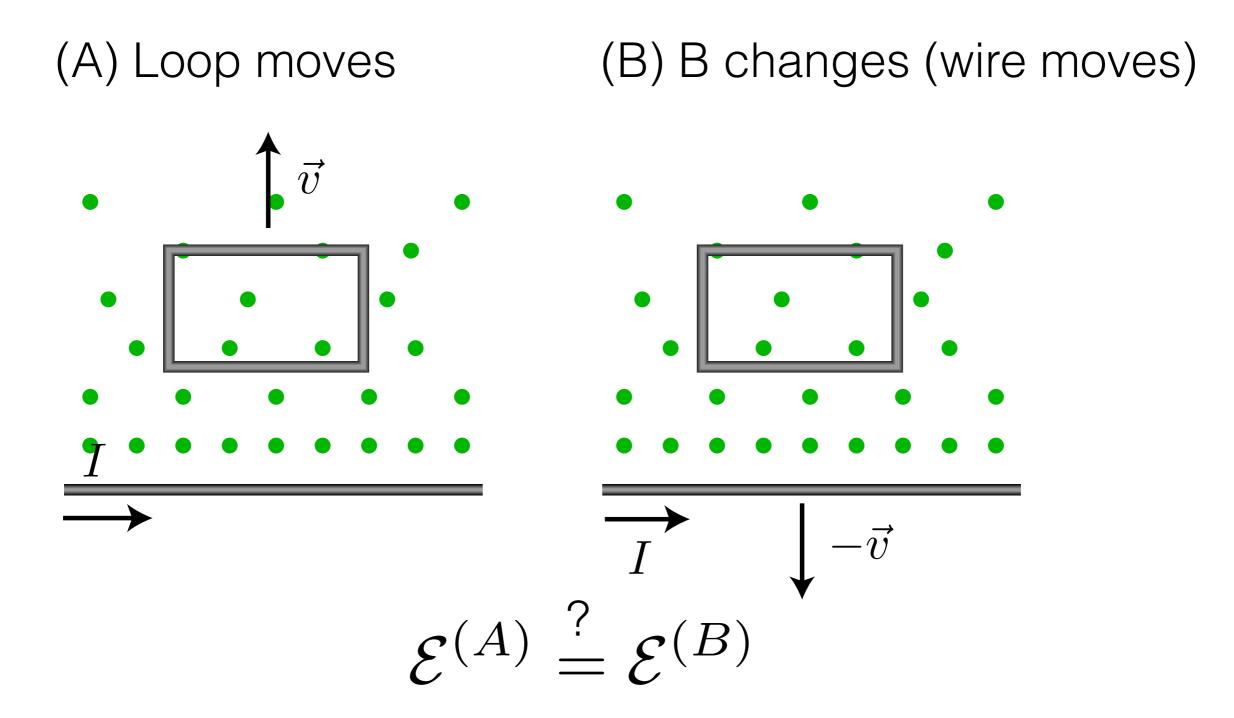


• EMF's are equal!

• How could this be?
$$\mathcal{E} \equiv \oint_{\partial \mathcal{M}} \vec{d\ell} \cdot \left(\vec{E} + \vec{v} \times \vec{B} \right)$$

• v = 0, Must be E — Not conservative!

Demo: Run experiment to test hypothesis!



(Maxwell) Faraday Law:

• Faraday Law of Induction for a stationary loop

$$\mathcal{E} = \oint_{\partial \mathcal{M}} \vec{d\ell} \cdot \left(\vec{E} + \vec{v} \times \vec{B}\right) = -\frac{d}{dt} \oint_{\mathcal{M}} d^2 A \, \hat{n} \cdot \vec{B}$$

• (Maxwell-)Faraday Law (Maxwell Equations)

$$\oint_{\partial \mathcal{M}} \vec{d\ell} \cdot \vec{E} = -\int_{\mathcal{M}} d^2 A \ \hat{n} \cdot \frac{\partial \vec{B}}{\partial t}$$

Ι

New law of physics! Describes E and B field, not just loops!

- Gauss Law (E): $\oint_{\mathcal{M}} d^2 A \ \hat{n} \cdot \vec{E} = Q_{\text{inside}} / \epsilon_0$
- Gauss Law (B): $\oint_{\mathcal{M}} d^2 A \ \hat{n} \cdot \vec{B} = 0$

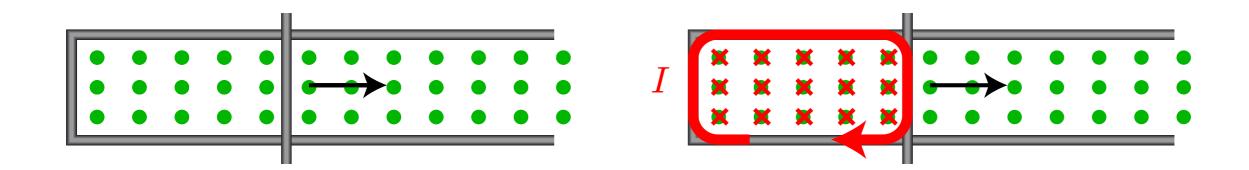
• Ampère Law: $\oint_{\partial \mathcal{M}} \vec{d\ell} \cdot \vec{B} = \mu_0 I + \mu_0 \epsilon_0 \frac{d}{dt} \int_{\mathcal{M}} d^2 A \, \hat{n} \cdot \vec{E}$ $\mathcal{M} = \text{const}$

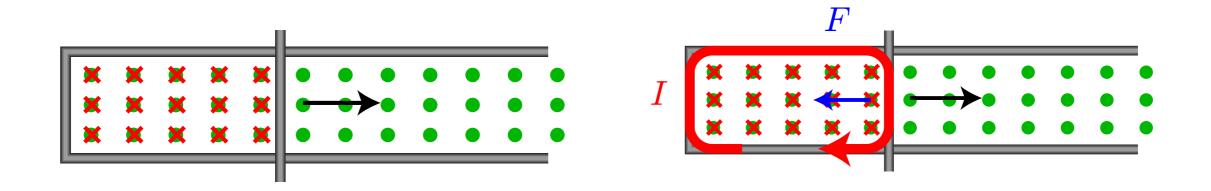
• Faraday Law: $\oint_{\partial \mathcal{M}} \vec{d\ell} \cdot \vec{E} = -\frac{d}{dt} \int_{\mathcal{M}} d^2 A \, \hat{n} \cdot \vec{B}$ $\mathcal{M} = \text{const}$

Which way does the current flow? (Lenz's Law)

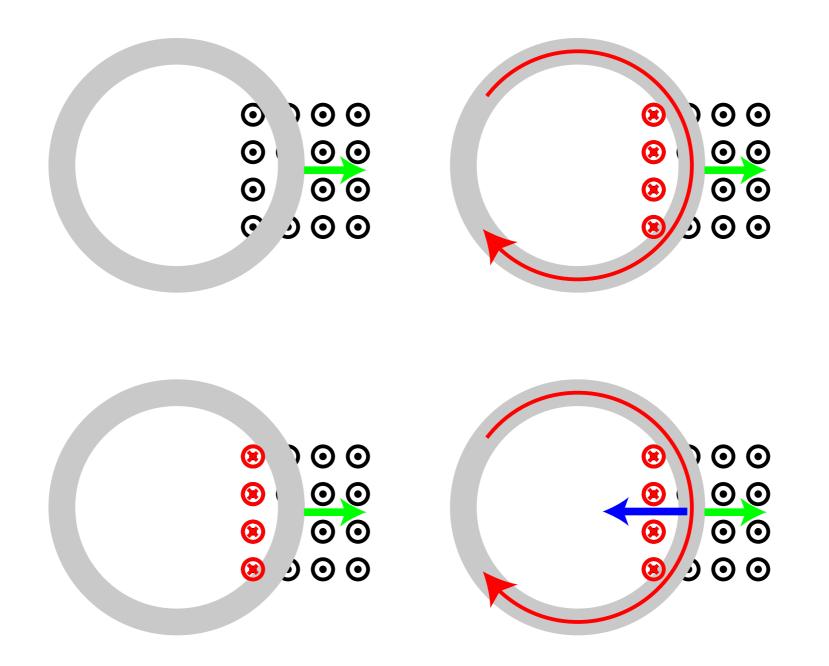
- Lenz's Law = "How to get the signs right!"
- Lenz's Law = Currents are generated to oppose the change that created it.
- Lenz's Law = Newton's Third Law + Energy conservation

Lenz's Law: Example 1





Lenz's Law: Example 2



Eddy Current Demos

