RC Circuits!
 Lecture 15

Exams will not be returned...

- Regrade of problem III.

Fliplt Lecture thoughts...

- "Everything looks good here, but it would have been nice to know this stuff before the lab this week, \#5."-Oops.
- "Can you explain what a capacitor really is?"
- "How it is used in everyday life such as circuits?"

Behaves like a short circuit for small t and a open circuit at long t...

RC Demo

Charging:

Overview of the action.

Charging:

 Overview of the action.

My capacitor heuristic:

- Small t (large v) \rightarrow

C is a short circuit

- Large t (small v) \rightarrow
C is an open circuit

Charging:

Setting up the equations

Kirchhoff Voltage Law:
$-V_{b}+(T R+Q) C=0$

Aside: Does current really flow through a capacitor?

- Current through 3 surface
- The current through the gap is always 0 !
- "Current through the capacitor"
= change in Q on plates

Aside: Does current really flow through a capacitor?

- "Current through the capacitor"
= change in Q on plates

$$
I=\frac{d Q}{d t}
$$

Charging:

Setting up the equations

Kirchhoff Voltage Law:

$$
-V_{b}+R \frac{d Q}{d t}+Q / C=0
$$

Initial State:

$$
Q=0
$$

Charging:
 Solving the equations

Overhead.

Charging: Solution

RC time constant: $\quad \tau \equiv R C$

$$
\begin{gathered}
Q(t)=C V_{b}\left[1-e^{-t / \tau}\right] \\
V_{C}(t)=V_{b}\left[1-e^{-t / \tau}\right]
\end{gathered}
$$

Quick check of the units....

- RC time constant units:

$$
[\tau]=[R][C]=[V][I]^{-1}[Q][V]^{-1}=[d Q / d t]^{-1}[Q]=s
$$

Discharging:

 Overview of the action.

Discharging: Setting up the equations

Kirchhoff Voltage Law:

$$
R I+Q / C=0
$$

Initial State:

$$
Q(0)=C V_{b}
$$

Discharging: Solution

RC time constant: $\quad \tau \equiv R C$

Energy flow in an RC circuit.

- Power: $\quad P=I V$
- Energy stored: $U=\frac{1}{2} C V^{2}$

$$
\begin{array}{ll}
\begin{cases}\int_{R C}^{\text {Power }} & P_{\text {Battery }}(t)=V_{b} I_{o} e^{-t / R C} \\
P_{\text {Battery }} & P_{R}(t)=R I_{o}^{2} e^{-2 t / R C} \\
P_{R}\end{cases} & P_{C}(t)=\left[\frac{q_{o}}{C}\left(1-e^{-t / R C}\right)\right]\left[I_{o} e^{-t / R C}\right]
\end{array}
$$

