Introduction to electrodynamics: Resistors

Lecture 13

The microscopic picture...

- Gas of charge carriers (usually electrons)
- Electric field accelerates charges
- Random collisions
 with the lattice leads
 to resistance

$$F = ma$$

$$F = \gamma v$$

Analogy to viscosity

- The Stokes Law: $F = \gamma v$ $\gamma = 6\pi \mu R$
- ~ flow through a viscus medium

One more analogy...

The microscopic picture...

Current density:

$$\vec{j} = nq\vec{v}$$

 Random collisions with the lattice leads to resistance

$$\vec{j} = nq\vec{F}/\gamma$$

$$\vec{j} = nq^2\vec{E}/\gamma = \sigma\vec{E}$$

The microscopic picture...

Ohm Law:

$$\vec{j} = \sigma \vec{E}$$

σ is conductivity

$$\rho \vec{j} = \vec{E}$$
$$\rho = \sigma^{-1}$$

p is resistivity

Resistance

The macroscopic picture...

 Current is the flux of the current density through a surface

$$I = \int d^2A \ \hat{n} \cdot \vec{j} = dq/dt$$

Ohm Law:

• Integral form:
$$V = IR$$
 $R = L\rho/A$

Resistance

Resistors in series

Overhead derivation

• Result: $R_{\rm Equiv} = R_1 + R_2$

• Intuitive picture:

Resistors in parallel

Overhead derivation

- Result: $R_{\mathrm{Equiv}}^{-1} = R_1^{-1} + R_2^{-1}$
- Intuitive picture:

Capacitors vs Resistors

Series Combination

Parallel Combination

Units

- [I] = [Current] = [Charge / Time] = C/s
 Ampere = A = Amp
- [V] = [Energy/Charge] = J/C = Volts = V
- $[R] = [Resistance] = V/A = Ohms = \Omega$

Electromotive force

- EMF: Historical name for voltage gain in a battery
- Work done per unit charge to increase/decrease its potential

$$[\mathcal{E}] = \mathcal{V}$$

Power: Supplied and Dissipated

Power supplied by a source of emf (voltage supply)

$$P = IV$$

Power dissipated by a ohmic resistor (to heat):

$$P = IV = RI^2 = V^2/R$$

Units: [Power] = J/s = Watts = W