Gauss Law \& Electric Potential Energy
 Lecture 6.

Announcements

- Monday: No class (MLK Day)
- Exam next week on Thursday
- Exam is NOT easy.
- Equation sheet and practice exam have been posted!
- Reading for Wednesday: (None)
- Wednesday: Mostly review...

From the checkpoint...

Infinite Sheets of Charge: Question 1 ($\mathrm{N}=128$)

In which case is the magnitude of the electric field at point P bigger?

Use superposition!

Conductors vs insulators

- Conductor (Insulator): Charge is free (not free) to move to establish electrostatic equilibrium
- Induction: A sufficient and equal number of + and - charges can be induced to cancel any E field in the conductor

$$
\stackrel{\oplus}{\stackrel{\oplus}{\stackrel{~}{\rightarrow}} \underset{\rightarrow}{\rightarrow}} \underset{\rightarrow}{\rightarrow}
$$

Demo...

- Trash can of science (a.k.a. Faraday Pail)

E field from a multi-layer Sphere/Coax cable

Clicker questions

All free charge is at the surface of conductors

- Use Gauss Law...
- Charge at the surface:

$$
\begin{aligned}
E_{\perp} & =\frac{\sigma}{\epsilon_{0}} \\
\vec{E}_{\|} & =0 \quad \text { (Prove this soon!) }
\end{aligned}
$$

Induced surface charge density is typically non-uniform in conductors.

Draw field lines...

Clicker questions

Electric Potential Energy

- Electric forces is conservative:
- The work performed by the electric field on a charge is path independent.
- Proof:
- Show for a point charge.
- Use superposition of point charges to represent arbitrary charge distribution.

Electric Potential Energy

- Show for a point charge...
- Work done by field on charge:

$$
d W=\vec{F} \cdot d \vec{\ell}
$$

- (... on board ...)
- Result:

$$
\Delta W=W_{1 \rightarrow 2} \equiv W_{2}-W_{1}=-\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}}\left[\frac{1}{r_{2}}-\frac{1}{r_{1}}\right]
$$

Electric Potential Energy

- Define the change is Electric Potential Energy as

$$
\Delta U=U_{1 \rightarrow 2} \equiv U_{2}-U_{1}=-W_{1 \rightarrow 2}
$$

- Electric Potential Energy difference:

$$
U_{1 \rightarrow 2} \equiv U_{2}-U_{1}=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}}\left[\frac{1}{r_{2}}-\frac{1}{r_{1}}\right]
$$

Electric Potential Energy

- Define Electric Potential as follows:

$$
U_{1} \equiv U_{1}-U_{\infty}=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}}\left[\frac{1}{r_{1}}-\frac{1}{\infty}\right]=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} r_{1}}
$$

relative to a point at ∞.

- Superposition applies
- Potential energy of a charge distribution $=$ energy required to assemble from ∞.

Electric Potential Energy

- Plot potential $U(\vec{r})=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} r}$
- (... on board ...)

Motion of Point Charge in Electric Field: Question 1 ($\mathrm{N}=123$)

- Heuristic for remembering signs: "Physics is always going down hill."

Question from smartPhysics:

Is there a connection between field lines and electric potential?

Electric Potential Energy of a charge distribution

Two point charges are separated by some distance as shown. The charge of the first is positive. The charge of the second is negative and its magnitude is twice as large as the first.

Is it possible find a place to bring a third charge in from infinity without changing the total potential energy of the system?
(A) YES, as long as the third charge is positive
(B) YES, as long as the third charge is negative
(C) YES, no matter what the sign of the third charge
(D) NO

Electric Potential Energy of a System of Point
Charges, II: Question 1 ($\mathrm{N}=123$)

