Nobel Prize to UW Physicist!

- Quantum Hall Effect: quantized conductivity
- DJT: Topological quantum numbers

David J. Thouless

E field from (more) continuous charge distributions...

Lecture 4.

Reading for next time

• 22-2 to 22-3: Flux and Gauss Law

Clicker

Demo: Application of forces generate by the E field

• Use the definition of the Electric field: $\vec{F}_{Net,0} = q_0 \vec{E}$

Ink jet printer

Cathode Ray Tube (CRT)

Demos for field lines

E field lines

- Lines start/end at +/- charges (or ∞)
- Number of lines starting/ ending is ∝ [charge]
- Lines emanating/terminating are uniformly spaced
- Density of lines is $\propto |\mathsf{E}|$
- Lines are tangent to E field
- Lines are radial and equally spaced →∞

E field lines

- Lines start/end at +/- charges (or ∞)
- Number of lines starting/ending is
 ∝ [charge]
- Arrow is the direction of the Field
- Lines emanating/terminating are uniformly spaced
- Density of lines is $\propto |\mathsf{E}|$
- Lines are tangent to E field
- Lines are radial and equally spaced →∞

Field lines: Opposite charges

(b)

Field lines: Like charges

Field lines: Opposite but unequal charges

What is a dipole?

- What happens when a charge distribution has 0 net charge
- Introduce dipole moment:

Field from a dipole

- E fields *almost* cancel
- Derive:

• Result:

$$\vec{E} = \frac{k}{r^3} \left[3\hat{r}(\hat{r} \cdot \vec{p}) - \vec{p} \right]$$

Dipoles feel force in nonuniform fields

• Dimensional analysis

Torque and energy for a dipole in an E field

• Torque: $\vec{\tau} = \vec{r} \times \vec{F}$

• Energy: $dW = -\tau \, d\theta$

Torque and energy for a dipole in an E field

• Torque: $\vec{\tau} = \vec{p} \times \vec{E}$

• Energy:
$$W = -\vec{p} \cdot \vec{E}$$

Summary of field scaling

Charge configuration	Symbol	Illustration	Asymptotic field
quadrupole	Q _{ij}	+2 -2 -2 +2	$\propto r^{-4}$
dipole	pi	+Q $-Q$	$\propto r^{-3}$
point charge	q	+Q	$\propto r^{-2}$
line charge	λ		$\propto r^{-1}$
plane charge	σ		$\propto r^0$

Electric Flux

 d^2A

 \vec{E}

• Definition of Electric Flux:

$$\Phi_{\mathcal{M}} = \oint_{\mathcal{M}} d^2 A \, \hat{n} \cdot \vec{E}$$

 Meaning of **flux**:
 ~ Number of field lines passing through a surface

How much water is flowing down the Amazon?

Flux: water analogy