Phys122A-Lecture 2 Electric Field

Physics 122 Labs Sections begin on next week

Before your section meets

- Get a copy of the lab manual at the UW Bookstore!
- Read the information on page iii as it has a lot of information related to the course, the course website, WebAssign, etc.
- Get a WebAssign account (Pay by credit card only)

There are 3 components to the labs:

- Pre-Labs: Needs to be completed <u>before</u> each of your lab sessions begin. Pre-labs will be completed in WebAssign
- In-class Experiment: This is your lab section in which you will need your lab manual.
- Post-Labs: Completed after your lab session also on WebAssign

(Lab) Course website:

- http://courses.washington.edu/phys122z/index.php
- Please check the Frequently Asked Questions (FAQs) link before you email the Instructor!

"Reading"

Course Schedule:

Phys 122 Autumn 2016									
Week	Day	Date	Lec#	Lecture topic	Text reading	FlipItPhysics	Tutorial	Labs	
1	w	9/28/16	1	Charge & Coulomb's Law ⊵	21-1 to 21-3	1. Coulomb's law	None	None	
	Th	9/29/16		NO CLASS DAY					
	F	9/30/16	2	Electric Field Vectors & Lines	21-4 to 21-5	2. Electric Field			
2	м	10/3/16	3	Electric Fields Act on Charges	21-5 to 21-6		Charge	Electrostatics	

From FlipIt Physics

For the collection of charges shown in the above problem, which of the following statements best describes F_Y , the y component of the net force on the charge at the origin

$$\mathbf{F}_{\mathbf{Y}} > 0$$

 $\mathbf{F}_{\mathbf{Y}} = 0$

 $\mathbf{F}_{\mathbf{Y}} = \mathbf{0}$ $\mathbf{F}_{\mathbf{Y}} < \mathbf{0}$

Force from Four Charges: Question 3 (N = 149)

"In Force from Four Charges it is unclear whether the angle matters."

From FlipIt Physics

- "What is charge?"
- "Electric charge is the physical property of matter that causes it to experience a force when placed in an electromagnetic field."
- "Conserved"
- Units: [Q] = Coulomb (C)

	е	р	n
Q	-e	+e	0

 $e = 1.60217662 \times 10^{-19} \text{ C}$

From FlipIt Physics

- "Where are you from?" Born in UK but lived here since I was 0.5 years old.
- "Don't assign two units!" Sorry.
- Explain why force on electrons and nucleus is equal magnitude. (Newton 3rd Law.)
- Line integral wasn't explained.

Introduction to the Electric Field...

• Coulomb Law:

$$\vec{F}_{1,2} = \frac{k \ q_1 q_2}{r_{1,2}^2} \hat{r}_{1,2}$$

• Superposition for an collection of *discrete* charges:

Introduction to the Electric Field...

• Superposition for an collection of *discrete* charges:

• Define the **Electric Field** (q₀ is a test charge):

$$\vec{E} \equiv \frac{\vec{F}_{\rm Net,0}}{q_0}$$

Electric field from a point charge

• Electric Field from a point charge (at the origin):

$$\vec{E} \equiv \frac{\vec{F}_{1,0}}{q_0} = \frac{k \, q_1}{r^2} \hat{r}$$

• Electric Field from a collection of charges:

$$\vec{E}(\vec{r}_0) = \sum_{j \neq 0} \frac{k \ q_j}{r_{j,0}^2} \hat{r}_{j,0}$$

What is a field?

- Scalar, vector (or tensor...) valued function of space (and time).
 - Electric Field (vector) $\vec{E}(\vec{r},t)$
 - Magnetic Field (vector) $\vec{B}(\vec{r},t)$
 - Electric Potential (scalar) $\Phi(\vec{r},t)$

Fields of all kinds...

These isolated Temperatures make up a Scalar Field (you learn only the temperature at a place you choose)

Fields of all kinds...

It may be more interesting to know which way the wind is blowing ...

That would require a VECTOR field. (you learn how fast the wind is blowing, AND in what direction)

Does the E field really exist?

- Computation tool or physical entity?
- Two unattractive alternatives:
 - Assume E field exists at all locations in space \checkmark
 - Assume action at a distance X
- Useful heuristic for understanding physics: There is no instantaneous action at a distance.

- Direction:
 - Radial

- Amplitude:
 - Decreases with distance

$$\vec{E}(\vec{r}) = \frac{k \ q_1}{r^2} \hat{r}$$

$$\vec{E}(\vec{r}) = \frac{k \ q_1}{r^2} \hat{r}$$

- "quiver" or Velocity Plot
- You almost never see the E field drawn this way!
- General tool for visualizing a vector field.

Field lines ... next time.

- "quiver" or Velocity Plot
- You almost never see the E field drawn this way!
- General tool for visualizing a vector field.

Two equal mass balls are suspended from the ceiling with equal length nonconducting threads as shown. Ball 1 has charge $Q_1 = +3q$ and Ball 2 has charge $Q_2 = +q$. – Which of the following pictures best represents the equilibrium position?

What happens to the Force on q_1 if its sign is changed?

- A) $|F_1|$ increases
- B) $|F_1|$ remains the same
- C) $|F_1|$ decreases
- D) Need more information to determine

- Two charges, Q₁ and Q₂, fixed along the x-axis as shown, produce an electric field E at a point (x,y) = (0,d) which is directed along the negative y-axis.
 - Which is true?

- (a) Both charges Q_1 and Q_2 must be positive.
- (b) Both charges Q_1 and Q_2 must be negative.
- (c) The charges Q_1 and Q_2 must have opposite signs.

Clicker 2-3

- Q₁ has charge +Q
- Q₂ has charge +2Q
- They are separated by d.
- Charge q is a distance a away from Q₁
- Is there a place the value for a -- between Q_1 and Q_2 where the force on ANY charge (positive or negative) is zero?
 - (a) NO
 - (b) Yes, but I can't find it with all this time pressure.
 - (c) Yes and my answer is _____ from Q₁. I will volunteer to specify if you ask me

Clicker 2-4

Electric field from a point charge

• Electric Field from a point charge (at the origin):

$$\vec{E} \equiv \frac{\vec{F}_{1,0}}{q_0} = \frac{k \, q_1}{r^2} \hat{r}$$

• Electric Field from a collection of charges:

$$\vec{E}(\vec{r}_0) = \sum_{j \neq 0} \frac{k \ q_j}{r_{j,0}^2} \hat{r}_{j,0}$$

E field from a line charge

• Electric Field from a collection of charges:

$$\vec{E}(\vec{r}_0) = \sum_{j \neq 0} \frac{k \ q_j}{r_{j,0}^2} \hat{r}_{j,0}$$

• Electric Field from a continuous charge distribution:

$$\vec{E}(\vec{r}) = k \int dq_{\vec{r}'} \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3} \qquad \vec{\vec{r}} = \vec{r}' \vec{r}'$$

E field from a charge distribution

$$\vec{E}(\vec{r}) = k \int dq_{\vec{r}'} \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3}$$

• **Electric Field** from a 1D source: $[\lambda] = C/m^1$

observer

$$\vec{E}(\vec{r})$$

 \vec{r}'
 \vec{r}'
origin

• **Electric Field** from a 2D source: $[\sigma] = C/m^2$

$$dq_{\vec{r}'} \to d^2 x \, \sigma(\vec{r}')$$

 $dq_{\vec{r}'} \to d\ell \,\lambda(\vec{r}')$

• **Electric Field** from a 3D source: $[\rho] = C/m^3$

$$dq_{\vec{r}'} \to d^3 x \, \rho(\vec{r}')$$

E field from a line charge

Clicker

Work the integral...