
1 Multiple Choice Solutions: Winter 2015

122 Exam 3

1.1 Problem 1

We know that the potential energy of particle at A from the electric potential
between A and B is equal to U = −q ∗ V and as the particle accelerates
through the potential it will convert all of that potential energy into the
Kinetic Energy it will have upon entering the region where there is a magnetic
field. Since U is directly proportional to V in the equation above, we can
see that doubling V also doubles U. Therefore the particle will also have
twice the Kinetic Energy when entering the magnetic field region. Since
KE = 1

2
mv2 doubling the kinetic energy will only increase the velocity by a

factor of
√

2. Now, if we look at our equation sheet we know that the motion
of a moving charged particle in a magnetic field follows the relationship:
qvB = mv2

r
. Rewriting this to find r (which is the radius of the half circle

that the particle’s path traces), we get r = mv
qB

. Since m, q, and B remain

the same and only v changes by a factor of
√

2 as we found above then the
radius r also increases by the same factor of

√
2 and thus since d = 2r it also

increases by a factor of
√

2 and we get our answer B.

1.2 Problem 2

Let’s start by remembering that velocity = ∆x
∆t

and so we can use this formula
to find the time taken by the particle with the initial values. Remember that

the circumference of a full circle is π∗diameter so in this case ∆t =
π
2
d

v
. Now

using the formula we found in problem 1 for the radius of the semicircle we
see that doubling the velocity doubles the radius and thus would double the

distance travelled. So now we would have ∆tnew =
π
2
dnew
vnew

=
π
2

2d

2v
=

π
2
d

v
which

is the exact same as our initial ∆t.

1.3 Problem 3

To solve this we need to find the magnetic force on the lower wire from the
magnetic field of the upper wire. So we will have to start by finding the
magnetic field of the upper wire with the equation: B = µ0I

4πr
∗ (sinθ2− sinθ1)

where θ2 = π
2

and θ1 = −π
2

so that the term in parentheses becomes 2 and
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we get B = µ0Itop
2πr

. Now using this to solve for the force on the lower wire

(~F = I~l × ~B) and keeping in mind that the magnetic field of the top wire
is into the page using the right hand rule and thus is perpendicular to the
current in the bottom wire:

F = Ibottom ∗ l ∗Btop (1)

F

l
= Ibottom ∗

µ0Itop
2πr

(2)

F

l
= (3.4A) ∗ µ0 ∗ 1.5A

2π ∗ 0.003m
(3)

F

l
= 3.4 ∗ 10−4N/m (4)

1.4 Problem 4

Using the right hand rule for the magnetic field from a current carrying wire
we know that the net magnetic field from the two wires in the plane of the
page will point either into or out of the page. Furthermore, we know that
the magnetic force on a charged particle is given by the equation ~F = q~v× ~B
and in this case ~v for the charged particle is into the page. Since both the
magnetic field and the velocity of the charged particle are either parallel or
antiparallel (we don’t even have to calculate the value!) the cross product
between them is 0 and thus we have no force from the wires on the charged
particle.

1.5 Problem 5

In order for the beam of electrons to not be deflected we need to have a
region of space where the forces on the beam from magnetic and electric
fields cancel out.
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Fmagnetic = Felectric (5)

qvB = qE (6)

v =
E

B
(7)

v =
3.4 ∗ 104V/m

2.0 ∗ 10−3T
(8)

v = 1.7 ∗ 107m/s (9)

1.6 Problem 6

Induced emf is equal to −dΦB
dt

where ΦB = ~B · ~A and ~A is the area vector of
the loop. For loop 1 (keeping in mind that the area vector points outwards
normal to the plane of the loop):

ΦB = ~B· ~A = B(t)∗(b1∗a)∗cos(60degrees) = B(t)∗(2∗b2∗a∗.5) = B(t)∗(b2∗a)
(10)

For loop 2:
ΦB = ~B · ~A = B(t) ∗ (b2 ∗ a) (11)

Therefore we see that they have the same magnetic flux and since B(t) will be
the same for both of them −dΦB

dt
will be the same for both of them meaning

the induced emf will be the same as well.
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1.7 Problem 7

To find the induced emf we will use all the equations we already used above
in problem 6, but this time we will insert values from the problem.

ΦB2 = ~B · ~A2 = B(t) ∗ (b2 ∗ a)

(12)

ΦB2 = (2mT ) ∗ exp(−t/3µs) ∗ (.01m ∗ .025m)
(13)

ε(t = 6µs) = −dΦB2

dt
= (−2mT ) ∗ (− 1

3µs
) ∗ exp(−6µs/3µs) ∗ (.00025m2)

(14)

ε(t = 6µs) = 22.56mV
(15)

We now have the induced emf, but we want the induced current so we
merely divide ε by our 2Ω resistance to get 11.28mA.

1.8 Problem 8

As the magnet falls with its north end pointing downward, the magnetic
field is directed downward through the loop and increasing the closer the
magnet gets to the loop. That means that there will be an induced magnetic
field opposing the increase in the magnetic field through the loop due to the
magnet and thus the induced field is in the upward direction. To connect
this to the current, we use the right hand rule for a current loop and get that
the induced current will be positive with the arrows we are given. Now, after
the magnet passes halfway through the loop, the southern end of the magnet
is closest to the loop and as it falls away the magnetic field lines are directed
downward again, but decreasing in strength. In order to make up for this
the induced magnetic field is also in the downward direction this time. Once
again using the right hand rule for a current loop we see that this requires
and induced current in the negative direction with the arrows shown.

1.9 Problem 9

The potential energy of the current loop is given by U = −~µ · ~B. Remember-
ing to take into account the negative sign, we can deduce that the potential
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energy is the most negative (and thus the lowest) when ~B and ~µ are in the
same direction. Using the right hand rule for the current loop we see that
when α = 0 we get the desired situation where ~µ of the loop points up in the
same direction as ~B.

1.10 Problem 10

Remember from Physics 121 that Worknet external = ∆E. In this case if we
rotate the coil from rest at α = 30 degrees to α = 0 degrees we are changing
the energy of the coil by changing the potential energy of the coil and the
work that you do is the external work. Using the equation from Problem 9
and the work equation we get

U30 = −(35A ∗m2) ∗ (0.2T ) ∗ cos(30degrees) = 6.06J (16)

U0 = −35(A ∗m2) ∗ (0.2T ) = 7 (17)

Wnet ext = ∆E = ∆U = U30 − U0 = (6.06− 7)J (18)

Wnet ext = −0.94J (19)

1.11 Problem 11

Since we know that the voltage drop across parallel branches are the same
then we know that the voltage drop across the middle branch with the ??
and the voltage drop across the right branch with three resistors will be the
same. We are told that the voltage drop across one of the resistors in the
right branch is 1V. Since the resistors are in series we know that the same
current passes through each of them. We also know that each resistor is
identical. Thus, using Ohm’s Law, V=IR, we know that the voltage drop
across each of the resistors must also be identical and since they are in series
we can add up the voltage drops to find the total voltage drop across that
branch. This gives us 3V. Since the middle branch is parallel to the right
branch it must have the same voltage drop of 3V.

1.12 Problem 12

We want to find the voltage and current through X and only X at any given
time. Therefore, we need to remember how an ideal ammeter and an ideal
voltmeter act. An ammeter acts as if it has 0 resistance and we place it in
series with the object whose current we are trying to measure. In the circuits
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pictured the ammeter is always in series with object X. Therefore, we need
to look at the placement of the voltmeter. We want to place the voltmeter
in parallel with the voltage drop we are trying to measure. As a result, we
can look at the circuits and immediately rule out 1 and 3 since the voltmeter
is not in parallel with only the voltage drop across X. Looking at 2 we need
to remember that the ideal ammeter acts as if it has 0 resistance and thus
no voltage drop across it. This means that 2 is an acceptable circuit for
our purposes. Now, looking at 4 it’s easier to see that the voltmeter is only
measuring the voltage drop across X and thus is also compatible with our
needs. The answer is then D, 2 or 4.

1.13 Problem 13

After a long time the capacitor is fully charged and has a voltage equal to
that of the battery. Thus, current does not flow through the right branch
and bulb B is initially off. Current does flow through the middle branch
though and bulb A is initially on. When the switch is flipped to position 2
the capacitor immediately starts discharging with the charges traveling along
the path of least resistance. This means that the left branch shorts the middle
branch and no current flows through bulb A meaning it goes out immediately.
Current is now flowing through the right branch as the capacitor discharges
meaning bulb B lights up, but as the capacitor discharges over time, bulb
B dims. Looking for these characteristics before and after the switch flips
guides us to choose graph E.
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Physics 122A, Winter 2015 Exam 3 EM-UWA122A151T-E3(EPC,MGI)Sol.doc 

V. [20 points total]  Parts A and B of this problem are independent. 
A. A neutral conducting sphere is placed halfway between two point 

charges, with charge +Q and –Q respectively. 

i. [2 pts] On the diagram, sketch the induced charge distribution 
on the sphere. 
The sphere will polarize, with negatives on the left and an equal number of positives on the right. 

ii. [4 pts] The sphere is now connected to ground through a wire, 
as shown. 
When the sphere is grounded, do any charges flow to or from 
ground?  If no charges flow or if there is not enough 
information, state so explicitly.  Explain. 
Charges flow in a conductor if there is an electric field 
pushing them in some direction.  In the wire, the vertical 
components of the field due to the external charges and the induced distribution cancel by 
symmetry.  There is still a horizontal component to the field in the wire, but charges in the wire 
can’t leave the wire, so the horizontal component doesn’t move charges either.  Thus no charges 
move through the wire. 
 

iii. [4 pts] The wire connecting the sphere to ground is now removed. 
Is the electric potential difference from the sphere to ground positive, negative, or zero?  Explain. 
When the sphere is connected to ground, the potential difference between the sphere and ground 
becomes zero (since the potential difference across a conducting wire is zero).  When the wire is 
removed, no charges move so no potential differences change.  The potential difference to the 
ground is still zero. 
 

B. The magnetic field lines due to two wires with equal currents into the page are shown. Point 1 is 
equidistant from the wires.   Which vector best represents the magnetic field at point 1 and at point 2? 
i. [5 pts] Point 1:  

(Circle the correct answer below.) 
A     B     C     D    Zero 
Explain. 
The magnetic field at a point is given by 
the tangent to the field line, in the 
direction of the field line, so C is the 
correct vector. 
 

ii. [5 pts] Point 2: 
(Circle the correct answer below.) 
A     B     C     D   E 
Explain. 
Similarly, the field must be tangent to the field lines, in the direction of the field line, so A is the 
correct vector. 

Neutral conducting
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+Q –Q

 

Wire to ground

+Q –Q

 

1

2

A

B

C
D

A
B

C

D

E

 


