
1 Multiple Choice Solutions: Winter 2015

122 Exam 1

1.1 Problem 1

First, let’s find the Electric Field at P from Q2. Using the formula E = k∗q
r2

we get 899000 N/C downward.
Now, let’s find the Electric Field at point P from Q1 and Q3. Charges

Q1 and Q3 are
√

602 + 802 = 100 nm away from point P. And therefore their
Electric Fields at P are equal in magnitude with a value of 575360 N/C but
the directions are each away from each charge in a straight line. As a result
the horizontal components from each of these Electric Fields cancels out and
we merely need to find the vertical downward components of the Electric
Field. We will do this by multiplying the magnitude of the respective E-
Fields by the Cosine of the angle between their vectors and the vertical.
This angle is shown below:

Looking at the figure and remembering that this hypotenuse of the tri-
angle above it is the distance of 100 nm we previously calculated we see that
this angle has a cosine of 80/100 = 0.8. Therefore, the vertical component of
the electric field from each of Q1 and Q3 is Cos[θ] * 575360 = 460288 N/C.

1



So, our total Electric Field is then EQ2 + EQ1y + EQ3y = 899000 + 2*460288
= 1.8 * 106 N/C.

1.2 Problem 2

Since we know that the three charges are positive then we know that the
Electric Field points radially outward from each point. Therefore, the field
from the top left and top right charge point in opposite directions. Since we
know that each charge is equal and it appears that point P is equidistant on
a line between the two top charges these fields cancel out at this point. That
leaves us with the Electric Field from the charge at the bottom left. Drawing
a line radially outward from this charge gives us a field in the same direction
as line 2.

1.3 Problem 3

Here we want to look at the density of field lines surrounding each point
charge since the Electric Field strength will be proportional to these densities.
Furthermore, we know from the equation for the Electric Field of a point
charge: E = k∗q

r2
that the strength of the electric field at an equal distance

away from each charge is directly proportional to the amount of charge.
The last thing we need to remember is that Electric Field lines go out from
positive charges and terminate on negative charges.

Using the above observations let’s determine the strength of each charge.
Looking at V we see that it has field lines connected to U. Since U is positive
we know that these field lines must be directed outwards from U and therefore
terminating on V. Thus, V must be negative. We also see that the density of
field lines around V is 1

2
that of U and conclude that V must have a charge

of -1 * (.5) * U = -1C.
Next looking at W we notice that all our observations for V are the same

here and conclude it also has a charge of -1C.
Now we look at Y and see that it has lines that connect from it to W

and V. This tells us that it must have the opposite charge. Since W and V
are negative Y must be positive. Now we compare the density of field lines
around it and see that it has 3 times the amount of W and V. Therefore we
calculate a charge of -1 * 3 * W = +3C.

Finally, looking at X we see that no lines go from V to X, but field lines
connect from Y to X. Therefore X must be a negative charge based upon

2



what we know above. Checking the density of field lines just around it we
see the same amount of field lines coming out of X and V and W. This tells
us that our last charge, X, has a charge of -1C.

1.4 Problem 4

The modified figure below has the Electric Fields from each charge in p1 on
each charge of p2. We can see that the fields on the left are stronger than
the fields on the right due to the closer distance. Also, we can see that the
net field on the left is downwards while the net field on right is upwards. As
a result, we will get a rotation in the direction of arrow 2 in the problem.

1.5 Problem 5

For this problem we need to look at three different areas.
1) The area outside the shell: If we draw a Gaussian sphere outside wall

of the uncharged conduction shell, we know that the Electric Field at the
surface of our Gaussian sphere will look like that of a point charge centered
at the middle and with a charge equal to the charge enclosed by our Gaussian
sphere. Since the shell has no charge, the only charge enclosed is the +5 µC
inside. Therefore, our field lines will be radially outward from the center of
the shell as they would be for a positive point charge located at the center.

2) The area inside the shell: Since the shell is a conductor we have an
Electric Field of 0 inside so no lines are present here.

3) The area inside the shell: Due to our answer in area 1 we know that
the outside surface of the conductor must have a positive charge density.
But, the conductor as a whole must be uncharged so the inner surface has
a negative charge density. Finally, since the charged solid sphere is closer
to the upper left part of the conducting sphere we will not have a uniform
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charge distribution on this inner surface. More of the negative charges will
be attracted to the area closer to the sphere and as a result the electric field
in this region will be stronger.

Taking into account this analysis of the three sections we see that B is
the correct answer.

1.6 Problem 6

Take a Gaussian surface located at a radius inside the conducting shell. Since
we are inside of a conductor we must have E = 0. Since our Gauss’ Law
equation is E = Qenc

(Sphere′sSurfaceArea)∗ε0 = 0 then the charge enclosed by our
Gaussian sphere must be 0. Therefore, the total charge on the inside surface
of the shell must be an amount that exactly cancels out the charge of the
solid conducting sphere, -5µC.

1.7 Problem 7

We need to remember a bit of mechanics here and analyze the forces on the
dust particle. We know that there will be an Electric Force pushing up since
both the sheet and dust particle have the same charge and we know that
the Weight Force will be pulling downwards. Since we are told that the dust
particle floats we know it is at rest (a = 0) and use Newton’s 2nd Law to
conclude:

Σ~F = m~a (1)

~FE − ~W = 0 (2)

~FE = ~W (3)

The Weight Force is just the mass of the particle times g. What is the
Electric Force? Here we will use ~FE = q∗ ~E but still need to find ~E. The field
comes from an infinite plane of charge and thus we can look at the equation
sheet and find that a positively charged sheet has an Electric Field pointing
away in a direction perpendicular to the sheet with a magnitude of E = σ

2ε0
.

We know enter all of this information into our equation above:
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q ~E = mg (4)

(12 ∗ 10−12C) ∗ 15 ∗ 10−9C/m2

2 ∗ 8.85 ∗ 10−12C2N−1m−2
= m ∗ 9.81m/s2 (5)

1.04 ∗ 10−9kg = m (6)

1.8 Problem 8

First of all, let’s pretend the thick conducting metal plate is not in between
the two infinite sheets and find the Electric Field in the space between the
two sheets. As in the previous problem we need to use the formula from the
equation sheet for the field from an infinitely charged sheet. Since sheet 1
has a positive charge density, σ1 it’s field will point directly away from the
sheet and in the region between the two plates it points to the right. Sheet 2
also has a positive charge density, σ2 and as a result it’s field in between the
two sheets points to the left. Therefore, in between the two sheets the field
just due to the charge densities on the sheets is (positive x is to the right):

Ex =
σ1
2ε0
− σ2

2ε0
(7)

Ex =
σ1 − σ2

2ε0
(8)

Ex =
7C/m2

2ε0
(9)

So we have a field from just sheets 1 and 2 of 7C/m2

2ε0
to the right. Now we

put the thick conducting metal plate back in. Inside the metal conducting
plate our field must be equal to 0 since we are inside a conductor. As a result,
the two side of the metal conducting plate act as two more infinitely charged
sheets and must create a field inside the conductor that exactly opposes the
field to the right caused by sheets 1 and 2. This means the two sides of the
conductor which we’ll call sheet L (for the left one) and sheet R (for the right

one) must create a net Electric Field of 7C/m2

2ε0
to the left. Following our same

procedure for finding the net Electric Field from sheets 1 and 2 we get that:

−7C/m2

2ε0
=
σL − σR

2ε0
(10)

5



But since we also know the total charge on the conductor is -3.0 C/m2

we have another equation: σL + σR = −3.0C/m2. Since we want to find σR
we can use this equation to replace σL in our equation above and get:

−7C/m2

2ε0
=
−3.0C/m2 − σR − σR

2ε0
(11)

−4.0C/m2 = −2σR (12)

2.0C/m2 = σR (13)

1.9 Problem 9

As we did in problem 6 we once again want to draw a Gaussian surface within
the walls of a conducting shell. However, this time we wish it to be Gaussian
cylinder with a radius r, such that a < r < b. Since the Electric Field must
be 0 inside the walls of the conductor we can apply Gauss’ Law setting E
= 0. The only way we can get this in every direction within the conductor
with our Gaussian surface is to have Qenc = 0. To cancel out the charge
from the +3µC/m charge density along the wire then the inner surface of
the conductor must have charge density -3µC/m which is the overall charge
density of the thick-walled conducting cylinder. As a result, there is no
overall charge anywhere else in the conductor meaning the surface charge on
the outside of the cylinder = 0.

1.10 Problem 10

We begin with Gauss’ Law: ∮
~E · d~a =

Q

ε0
(14)

and we will use a cylindrical Gaussian cylinder with a radius of 20cm.
We know that a cylindrical line charge will have a radial electric field so the
~E · d~a for the top and bottom of our Gaussian cylinder will be 0 since the
area vector points normal to the surface and in each of these cases will point
90 degrees away from the r̂ direction.

That just leaves us with the side of the cylinder where by convention we
choose to point the area vector outwards from the surface and thus in the
r̂ direction. Therefore we get

∮
~E · d~a = E

∮
da. Integrating the

∮
da gives
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us the surface area of the side of a cylinder which is 2πrh. Rewriting Gauss’
Law with our new information gives us:

E ∗ 2πrh =
σh

ε0
(15)

where we remember that Qenc = σ∗ length along the line charge and
in this case the length along the line charge is the height of our Gaussian
cylinder. Canceling the h on either side of the equation and converting 20cm
to .2m we get a value for the Electric Field:

E =
6µC/m

2π ∗ .2m ∗ ε0
= 0.54 ∗ 106N/C (16)

1.11 Problem 11

We have 4 distinct regions in the plot that we will analyze individually.
1) r < 4cm (r < a): In this region if we draw our Gaussian cylinder our

only charge enclosed is that from the infinite line of charge. We know that
the Electric Field of an infinite line points out radially and looking at our
equation sheet we see that it falls as 1/r in the radial direction.

2) 4cm < r < 5cm (a < r < b): In this region we are within the walls of
the conductor and thus the Electric Field must be equal to 0.

3) 5cm < r < 10cm (b < r < c): If we draw our Gaussian cylinder in
this region we are once again in the same situation as Problem 9. Since
there is no outer surface charge density we have the same amount of charge
enclosed, 0. Therefore, in this region the Electric Field is like the interior of
the conductor and equal to 0.

4) r > 10cm (r > b): Here we can once again draw a Gaussian cylinder
and see that our charge enclosed is now positive again due to the charge
density located on the nonconducting cylindrical shell. Since we are still in
a situation with cylindrical symmetry we have an Electric Field that drops
in the same way a line charge would, 1/r in the radial direction.

Putting our analysis from these four regions together we see that the
answer that correctly plots this Electric Field is (b).

1.12 Problem 12

Since the electroscope’s vane was initially open we know that there must be
some initial overall charge in the electroscope that is causing a repulsion be-

7



tween the ends of the vane and post. When the negatively charged teflon rod
is brought closer to the electroscope disk it will repel more negative charges
into the post and vane. Since this causes the repulsion to be even stronger
(evidenced by the vane opening further), we can conclude that the charges
are the same sign as the charges causing the initial repulsion. Therefore, the
initial charge distribution must be negative and without the presence of the
rod it should be evenly distributed giving us answer (d).

1.13 Problem 13

As we mentioned in the answer for 12 the presence of the rod repels like
charges. In addition, without touching the electroscope and without any
sparks jumping the overall charge on the electroscope must remain the same
as it was before. Therefore, we should have the same amount and same
type of charge that we had in our answer to 12. The answer choice that
both conserves the same amount of charge and shows the like charges being
repelled by the rod is answer choice (b).

1.14 Problem 14

Since the rod repels like charges, the negative charges are now repelled past
the end of the electroscope and into the hand. Conversely, positive charges
are attracted to the rod and move towards the electroscope disk and concen-
trate as close to the rod as possible. Therefore, we choose (a).
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IV. [20 pts]  The question consists of two independent parts, A and B. 

A. Two identical insulating spheres AB and CD consist of 
uniformly charged hemispheres A, B, C, and D as shown.  
Hemispheres A and C contain +Q total charge each, and 
hemispheres B and D contain –Q total charge each.  Note the x- 
and y-directions defined in the figure. 

i. [4 pts]  In what direction is the net electric force exerted on 
hemisphere C by sphere AB alone (do not include any effects due to hemisphere D)?  If the net 
electric force is zero, state so explicitly.  Explain. 

The direction of net electric force on C by AB is to the left.  By Coulomb’s Law, electric force is 
proportional to 

2/1 r so the attractive force between B and C is greater than the repulsive force 
between A and C.  Summing the two forces gives a net force to the left. 

ii. [6 pts]  In what direction is the net electric force exerted on sphere CD by sphere AB?  If the net 
electric force is zero, state so explicitly.  Explain. 

The direction of net electric force on CD by AB is to the left.  Sphere AB is closer to C than it is to 
D.  Thus the attractive force on C by AB is greater in magnitude than the repulsive force on D by 
AB by manipulations of Coulomb’s Law.  Summing the two forces gives a net force to the left. 

B. In case 1 (shown at right), a small point charge of +q is placed to the 
left of a charged arc at its center.  The arc is uniformly charged and 
contains +2Q total charge, has a radius of r, and an angle of θ that is 
less than 90°.  A point charge of +2Q is placed to the left of the small 
charge at a distance r away.  Note the x- and y-directions defined in 
the figure. 

i. [5 pts]  In what direction is the net electric force exerted on the 
small charge +q?  If the net electric force is zero, state so 
explicitly.  Explain. 

The direction of net electric force on the small charge +q is to the right.  In the charged arc, 
charge is distributed such that the y-components of the force contribution cancel, resulting in a 
smaller sum in the x-component.  Thus the repulsive force by the point charge +2Q will be 
stronger than the repulsive force of the charged arc, so the net force will be to the right. 

ii. [5 pts]  In case 2 (shown at right), the charged arc from case 1 is 
replaced with two point charges of +Q each, located at the ends of 
where the charged arc used to be. 

Is the magnitude of the net electric force exerted on the small 
charge +q in case 2 greater, less than, or equal to the magnitude 
of the net electric force exerted on the small charge +q in case 1?  
If there is not enough information, state so explicitly.  Explain. 

The magnitude of the net electric force on the small charge +q will increase.  By replacing the 
charged arc with two point charges, the charge is now localized such that more of the force 
contribution has y-components that cancel, resulting in a smaller sum in the x-component.  Since 
the part of the electric force pointing to the left is decreasing, the magnitude of net electric force 
is increasing to the right. 

A B C D

+Q +Q

–Q –Q
x

y

 

 

 


