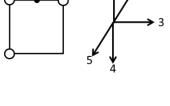
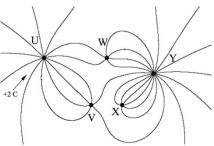

Part I. Lecture Multiple Choice (43 points total)

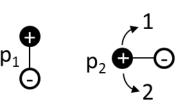
1. (5 pts.) Three charges Q_1 , Q_2 , and Q_3 , each equal to 6 μ C, are in a straight line. The distance between neighboring charges is 0.6 m. The magnitude of the electric field at P, which is 0.8 m from Q_2 on a line at right angles to the line between Q_1 and Q_3 , is (updated with correct ans)

- A. $0.25 \times 10^5 \text{ N/C}$
- $B. \quad 0.9\times 10^5 \text{ N/C}$
- C. $1.5 \times 10^{5} \text{ N/C}$
- D. 1.7×10^5 N/C
- $E. \quad 2.6\times 10^5 \; N/C$

2. (3 pts) A square has equal positive charges at three of its corners, as shown. The direction of the electric field at point P is $_1$

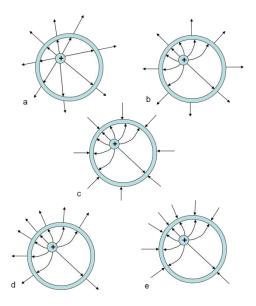

- A. 1
- B. 2
- C. 3
- D. 4
- E. 5


3. (4 pts) Five charges, labeled U through Y, and the electric field lines they create are shown in the figure. Given that the **charge on U is +2 C**, the electric charges on the others are


Α.	V = +4/3C	W = +2/3C	X = -1C	Y = -2C
Β.	V = -4C	W = -2C	X = +6C	Y = -6C
C.	V = -1C	W = -1C	X = -1C	Y = +3C
D.	V = +1C	W = -1C	X = -1C	Y = +3C

4. (3 pts) Two electric dipoles, p_1 and p_2 , are arranged as shown. Dipole p_1 on the left is fixed. It cannot move. Dipole p_2 is placed as shown and released. It is free to move or rotate. What happens to p_2 ?

- A. It will translate toward p1
- B. It will translate away from p1
- C. It will rotate along the arrow 1 path
- D. It will rotate along the arrow 2 path
- E. It will remain in its current positon and orientation



The figure to the right applies to the next two questions

5. (3 pts) A solid conducting sphere with a net positive charge $+5 \ \mu$ C is placed inside an <u>uncharged conducting shell</u>. Which of the diagrams most accurately depicts the electric field lines? *Pick the letter on the right and put it on your answer sheet*

6. (3 pts) If the uncharged shell has inner radius R, what is the net induced charge on the inside of the shell?

- A. 0
- Β. -5 μC
- C. +5 μC
- D. $-5 \,\mu C/4\pi R^2$
- E. +5 μ C/4 π R²

Q = 12 pC

M = ?

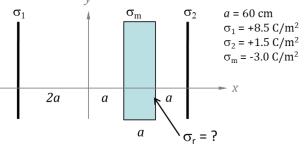
7. (5 pts) A small dust particle is given a net positive charge of $q = +12 \text{ pC} (1 \text{ pC} = 10^{-12} \text{ C})$. It is positioned and floats above a very large sheet (approximate as an infinite plane), with a surface charge density of $\sigma = +15 \text{ nC/m}^2$. What is the particle mass M? (recall: g = 9.8 m/s²)

- A. 1.5×10^{-19} kg
- B. $16.5 \times 10^{-12} \text{ kg}$
- C. 1.04×10^{-9} kg

D.
$$2.08 \times 10^{-9}$$
 kg

E. It cannot be determined from the information given

8. (5 pts) Two infinite, thin sheets of charge are placed perpendicular to the x-axis with surface charge densities σ_1 and σ_2 . A thick <u>conducting metal</u> plate of infinite area is placed between these charged sheets. It has a net charge per unit area of σ_m . What is the surface charge density σ_R induced on the <u>right-hand surface</u> of the conducting plate?

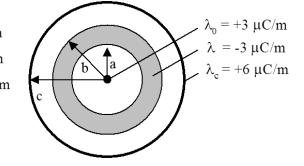

A.
$$\sigma_{R} = 1.5 \text{ C/m}^2$$

B.
$$\sigma_{R} = 2.0 \text{ C/m}^2$$

C.
$$\sigma_{R} = 4.0 \text{ C/m}^2$$

D. $\sigma_{R} = 5.0 \text{ C/m}^2$

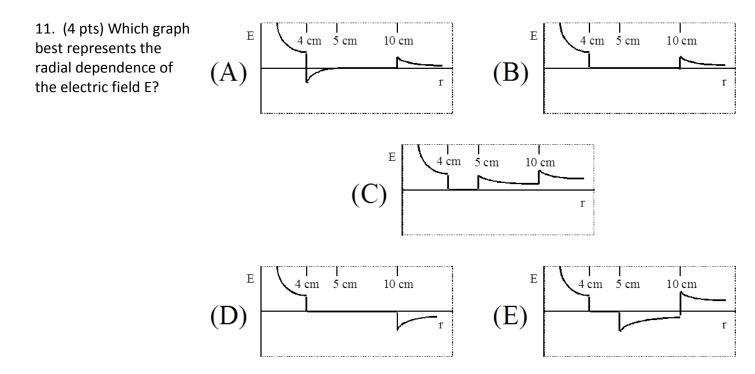
E.
$$\sigma_{R} = 7.0 \text{ C/m}^2$$


 σ = +15 nC/m²

The figure to the right applies to the next three questions

An infinite line of charge pointing **into the page** has charge density $\lambda_0 = +3 \ \mu\text{C/m}$ (black dot).

Concentric with the line is a thick-walled hollow cylinder (shaded), made of <u>conducting</u> material. The hollow cylinder has a charge per unit length of $\lambda = -3$ a = 4 cm μ C/m. Finally, a **thin** <u>nonconducting</u> cylindrical shell b = 5 cm is concentric with the other two objects, and carries c = 10 cm a charge per unit length of $\lambda_c = +6 \mu$ C/m. The dimensions of the objects are shown in the figure; all three have infinite length.



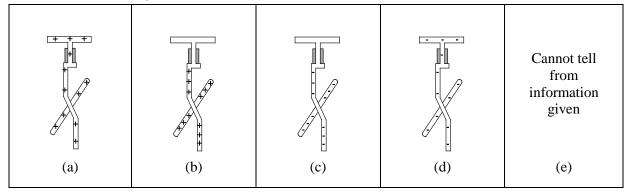
9. (3 pts) What is the surface charge density σ_b on the outer surface of the thick conducting shell?

- A. $\sigma_b > 0$
- B. $\sigma_b = 0$
- C. $\sigma_b < 0$

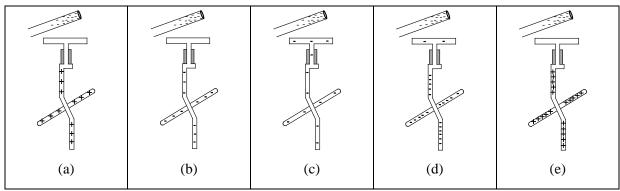
10. (5 pts) What is the magnitude of the electric field at a radius r = 20 cm?

- A. $E = 0.54 \times 10^6 \text{ N/C}$
- B. $E = 1.23 \times 10^6 \text{ N/C}$
- C. $E = 3.15 \times 10^6 \text{ N/C}$
- D. $E = 5.57 \times 10^6 \text{ N/C}$
- E. $E = 7.14 \times 10^6 \text{ N/C}$

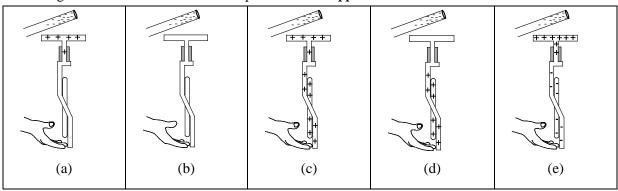
last


Student ID _____

II. Lab questions [12 pts]


Initially, an electroscope's vane is **open**, as shown at right. Then a **Teflon** rod is rubbed with a wool cloth, giving it a **negative charge**. The rod is held *near* the electroscope disk (but does not touch and no sparks jump), and it is observed that the vane **opens further**.

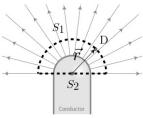
first


12. [4 pts] Which picture below shows the charge distribution on the electroscope *before* the Teflon rod is brought near the disk?

13. [4 pts] Which picture below shows the charge distribution on the electroscope *while* the Teflon rod is held near the disk?

14. [4 pts] Next, the experimenter continues to hold the rod in one hand **near** the electroscope's disk, and **touches the bottom end of the post with a finger on the other hand.** Which picture below shows the charge distribution on the electroscope *when this happens*?

The next three problems are related.

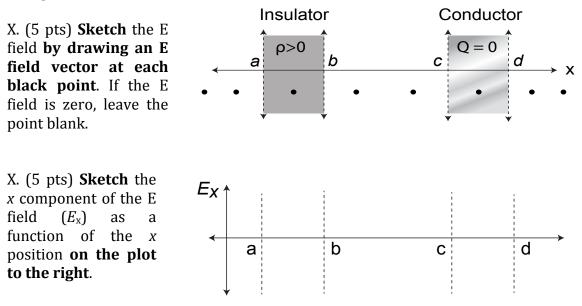

A lightning rod in a storm. Study the field lines and answer the following questions.

X. (5 pts) **Rank** the **magnitude** of the **force** on a negative charge at points A, B, C and D from smallest to largest. (If the electric field at any two points is equal, state so explicitly.)

$$F_{-} < F_{-} < F_{-} < F_{-}$$

X. (5 pts) Why?

Assume the E field outside the top cap of the lightning rod is well **approximated** by the field generated by a charged spherical conductor, as shown. Consider the Gaussian **surface** *S* constructed from the half sphere *S*₁ and circular end cap S_2 , as shown.



В

X. (5 pts) If charge *O* is enclosed by the **Gaussian surface** S, what is the **electric field vector** at point D in terms of Q, \vec{r} and ε_0 ?

The next two problems are related.

E field from an infinite slab: Consider an infinite insulating slab with charge density $\rho > 0$ and an infinite **conducting slab** with no net charge (Q = 0) for the next two questions.

